Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Although the COVID-19 crisis reduced the total number of people suffering from aviation noise, along with significant noise reduction achieved through the effective implementation of the ICAO Balanced Approach, aviation noise continues to be a sensitive environmental factor for local communities. Developing a comprehensive management strategy requires realistic input data for accurate noise modeling and management. This study explores the integration of ADS-B data to improve aviation noise management and multicriteria optimization. The maximum entropy approach is applied to incorporate environmental and operational interrelationships, including noise criteria from various sources. This proposed methodology presents a holistic approach that unites aviation noise modeling, monitoring/measuring, and management to identify and substantiate the best noise reduction practices for a specific airport. The study specifically examines the sensitivity of noise modeling results to realistic flight tracks (ADS-B data) for urban airports in Ukraine, focusing on both lateral (approach and departure stages) and vertical dispersion. Test cases are outlined to demonstrate the efficiency of the entropy-based optimization model.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
55--70
Opis fizyczny
Bibliogr. 13 poz., fot., rys., tab., wzory
Twórcy
autor
- State University ‘Kyiv Aviation Institute’, 1, Liubomyra Huzara Ave., Kyiv, Ukraine
Bibliografia
- [1] EASA. European Aviation Environmental Report 2022. 2022. Available from: https://www.eurocontrol.int/sites/default/files/2022-09/eurocontrol-easa-eaer-2022.pdf [cited 2022 Sep 09].
- [2] EASA. European Aviation Environmental Report 2025. 2025. Available from: https://www.easa.europa.eu/en/domains/environment/eaer/downloads [cited 2025 Jan 20].
- [3] ICAO. Recommended method for computing noise contours around airports. ICAO Doc 9911, 2nd ed. Montreal: ICAO; 2018.
- [4] ECAC. Report on standard method of computing noise contours around civil airports. ECAC Doc 29, 4th ed. Volumes 1-3. Available from: https://www.ecac-ceac.org/documents/ecac-documents-and-international-agreements [cited 2022 Sep 09].
- [5] ISO. Acoustics-unattended monitoring of aircraft sound in the vicinity of airports. ISO/CD 20906. Geneva: ISO Central Secretariat; 2009. Available from: https://www.iso.org/standard/35580.html [cited 2022 Aug 25].
- [6] Zaporozhets O, Levchenko L. Accuracy of noise-power-distance definition on results of single aircraft noise event calculation. Aerospace. 2021;8(5):121.
- [7] FlightRadar24.com. Available from: https://www.flightradar24.com [cited 2022 Oct 14].
- [8] FlightAware.com. Available from: https://www.flightaware.com [cited 2022 Oct 14].
- [9] Schultz M, Olive X, Rosenow J, Fricke H, Alam S. Analysis of airport ground operations based on ADS-B data. International Conference on Artificial Intelligence and Data Analytics for Air Transportation; 2020; Singapore. p. 1-9.
- [10] Synodinos A. A new framework for estimating noise impact of novel aircraft [dissertation]. Southampton: University of Southampton; 2017.
- [11] Tokarev V, Kazhan K. Entropy approach for mitigation of environmental aviation impact and airport capacity increase. Int J Sustain Aviat. 2014;1(2):119-138.
- [12] Kazhan K, Tokarev V. The optimal noise modelling in the airport vicinity. The 9th International Conference on Theoretical and Computational Acoustics, Proceedings; 2009; Dresden. p. 41-50.
- [13] Wilson AG. The use of entropy maximizing models in the theory of trip distribution, mode split and route split. J Transp Econ Policy. 1969;3(1):108-126
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4497d568-bbc0-49c5-b6b4-c9c8adc8fe03
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.