PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Phytochemical composition and antifungal effectiveness of Phoenix dactylifera L. rachis extracts

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present study appraised the inhibitory role of ethanol (PDEE) and ethyl acetate (PDEAE) extracts of Phoenix dactylifera L. against three molecularly identified fungi: Fusarium oxysporum, Botrytis cinerea, and Rhizoctonia solani. HPLC analysis revealed that gallic acid was the major phenolic compound in both extracts: (PDEE: 1721.90 μg/g) and (PDEAE: 101.53 μg/g). The major flavonoids in PDEE are rutin, kaempferol, and quercetin, whereas PDEAE contains kaempferol, naringenin, and quercetin. The GC-MS showed 11-octadecenoic acid methyl ester (26.25%) is the highest compound in PDEE, while diisooctyl phthalate (18.82%) is the most important compound in PDEAE. At 50 μg/mL, the inhibition percentage of PDEAE initiated the highest growth inhibition of F. oxysporum (49.63%) and R. solani (71.43%). Meanwhile, PDEE at 200 μg/mL initiated an inhibition value of 77.78% for B. cinerea. As a result, PDEAE is considered more effective than PDEE in controlling the growth of selected isolates.
Rocznik
Strony
76--84
Opis fizyczny
Bibliogr. 60 poz., rys., tab., wz.
Twórcy
  • Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, Alexandria 21934, Egypt
  • College of Physical Education and Sport Sciences, Al-Mustaqbal University, Babylon, Iraq
  • College of Physical Education and Sport Sciences, Al-Mustaqbal University, Babylon, Iraq
  • Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
  • Department of Food Technology of Plant Origin, Poznań University of Life Sciences, Poznań, Poland
autor
  • Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt.
Bibliografia
  • 1. Song, X. (2024). Antibacterial, antifungal, and antiviral bioactive compounds from natural products. Molecules 29(4), 825. DOI: 10.3390/molecules29040825.
  • 2. Bhattacharya, R., Sharma, P., Bose, D., Singh, M. (2024). Synergistic potential of α-Phellandrene combined with conventional antifungal agents and its mechanism against antibiotic resistant Candida albicans. CABI Agric. Biosci. 5(1), 17. DOI: 10.1186/s43170-024-00218-1.
  • 3. Dubale, S., Kebebe, D., Zeynudin, A., Abdissa, N., Suleman, S. (2023). Phytochemical screening and antimicrobial activity evaluation of selected medicinal plants in Ethiopia. J. Exp. Pharmacol. 15, 51–62. DOI: 10.2147/JEP.S379805.
  • 4. Eoin, L.N. (2016) Systematics: Blind dating. Nat. Plants 2(5), 16069. DOI: 10.1038/nplants.2016.69.
  • 5. Al-Alawi, R., Al-Mashiqri, J.H., Al-Nadabi, J.S.M., Al--Shihi, B.I., Baqi, Y. (2017). Date palm tree (Phoenix dactylifera L.): Natural products and therapeutic options. Front. Plant Sci. 8, 845. DOI: 10.3389/fpls.2017.00845.
  • 6. Chao, C.T., Krueger, R. (2007). The date palm (Phoenix dactylifera L.): Overview of biology, uses, and cultivation. Hort Sci. 42(5), 1077–82. DOI: 10.21273/hortsci.42.5.1077.
  • 7. Boulenouar, N., Marouf, A., Cheriti, A. (2011). Antifungal activity and phytochemical screening of extracts from Phoenix dactylifera L. cultivars. Nat. Prod. Res. 25(20), 1999–2002. DOI: 10.1080/14786419.2010.536765.
  • 8. Najat A., Kahkashan P. (2012). In vitro inhibition potential of Phoenix dactylifera L. extracts on the growth of pathogenic fungi. J. Med. Plants Res. 6(6), 1083–8. DOI: 10.5897/jmpr11.1545.
  • 9. Rose, G.R.F., Howdon, J.B., Bayley, C.H. (1959). Observations on the use of copper formate as a rotproofer for cotton fabric. Text. Res. J. 29(12), 996–1005. DOI: 10.1177/004051755902901210.
  • 10. Rossmoore, H.W. (1990). The interaction of formaldehyde, isothiazolone and copper. Int. Biodeterior. 26(2–4), 225–35. DOI: 10.1016/0265-3036(90)90062-C.
  • 11. Abrams, E., Bottoms, R.R. (1956). A Copper process for prolonged microbiological protection of cellulosic fabrics by chemical modification. Text. Res. J. 26(8), 630–40, DOI: 10.1177/004051755602600808.
  • 12. Aamer, H.A., Al-Askar, A.A., Gaber, M.A., El-Tanbouly, R., Abdelkhalek, A., Behiry, S., Elsharkawy, M.M., Kowalczewski, P.Ł., El-Messeiry, S. (2023). Extraction, phytochemical characterization, and antifungal activity of Salvia rosmarinus extract. Open Chem. 21(1), 20230124. DOI: 10.1515/chem-2023-0124.
  • 13. Hammer, P.E., Evensen, K.B., Janisiewicz, W.J. (2019). Postharvest control of Botrytis cinerea infections on Cut rose flowers with pyrrolnitrin. Hort Sci. 25(9), 1139a–1139. DOI: 10.21273/hortsci.25.9.1139a.
  • 14. Fravel, D., Olivain, C., Alabouvette, C. (2003). Fusarium oxysporum and its biocontrol. New Phytol. 157(3), 493–502. DOI: 10.1046/j.1469-8137.2003.00700.x.
  • 15. Ajayi-Oyetunde, O.O., Bradley, C.A. (2018). Rhizoctonia solani: taxonomy, population biology and management of rhizoctonia seedling disease of soybean. Plant Pathol. 67(1), 3–17. DOI: 10.1111/ppa.12733.
  • 16. Williamson, B., Tudzynski, B., Tudzynski, P., Van Kan, J.A.L. (2007). Botrytis cinerea: The cause of grey mould disease. Mol. Plant Pathol. 8(5), 561–80. DOI: 10.1111/j.1364--3703.2007.00417.x.
  • 17.Aouadi, G., Soltani, A., Grami, L.K., Abada, M., Ben., Haouel, S., Boushih, E., Chaanbi, M., Elkahoui, S., Hajlaoui, M.R., Jemâa, J.M. Ben., Taibi, F. (2021). Chemical Investigations on Algerian Mentha rotundifolia and Myrtus communis Essential Oils and Assessment of their Insecticidal and Antifungal Activities. Int. J. Agric. Biol. 26(6), 666–80. DOI: 10.17957/IJAB/15.1881.
  • 18. Hamzah, K.A., Al-Askar, A., Kowalczewski, P., Abdelkhalek, A., Emaish, H.H., Behiry, S. (2024). A comparative study of the antifungal efficacy and phytochemical composition of date palm leaflet extracts. Open Chem. 22(1), 20240044. DOI: 10.1515/chem-2024-0044.
  • 19. Kumar, A., Shukla, R., Singh, P., Prasad, C.S., Dubey, N.K. (2008) Assessment of Thymus vulgaris L. essential oil as a safe botanical preservative against post harvest fungal infestation of food commodities. Innov. Food Sci. Emerg. Technol. 9(4), 575–80. DOI: 10.1016/j.ifset.2007.12.005.
  • 20. Dissanayake, M. (2014) Inhibitory Effect of Selected Medicinal Plant Extracts on Phytopathogenic Fungus Fusarium oxysporum (Nectriaceae) Schlecht. Emend. Snyder and Hansen. Annu. Res. Rev. Biol. 4(1), 133–42. DOI: 10.9734/arrb/2014/5777.
  • 21. Youssef, N.H., Qari, S.H., Behiry, S.I., Dessoky, E.S., El-Hallous, E.I., Elshaer, M.M., Kordy, A., Maresca, V., Abdelkhalek, A., Heflish, A.A. (2021). Antimycotoxigenic activity of beetroot extracts against Altenaria alternata mycotoxins on potato crop. Appl. Sci. 11(9), 4239. DOI: 10.3390/app11094239.
  • 22. Lengai, G.M.W., Muthomi, J.W., Mbega, E.R. (2020). Phytochemical activity and role of botanical pesticides in pest management for sustainable agricultural crop production. Sci. African 7, e00239. DOI: 10.1016/j.sciaf.2019.e00239.
  • 23. EL-Mously, H., Midani, M., Darwish, E.A. (2023) Date Palm Byproducts in Other Fields of Applications. Materials Horizons: From Nature to Nanomaterials, Springer, pp. 345–54. DOI:10.1007/978-981-99-0475-4_12.
  • 24. Mandal, K., Chandra Joshi, B., Dobhal, Y. (2022). Phytopharmacological Review on Date Palm (Phoenix dactylifera). Indian J. Pharm. Sci. 84(2). DOI: 10.36468/pharmaceutical--sciences.919.
  • 25. Wu, H.S., Wang, Y., Zhang, C.Y., Bao, W., Ling, N., Liu, D.Y., Shen, Q.R. (2009). Growth of in vitro Fusarium oxysporum f. sp. niveum in chemically defined media amended with gallic acid. Biol. Res. 42(3), 297–304. DOI: 10.4067/S0716-97602009000300004.
  • 26. Apolonio-Rodríguez, I., Franco-Mora, O., Salgado--Siclán, M.L., Aquino-Martínez, J.G., Apolonio-Rodríguez, I., Franco-Mora, O., Salgado-Siclán, M.L., Aquino-Martínez, J.G. (2017). In vitro inhibition of Botrytis cinerea with extracts of wild grapevine (Vitis spp.) leaves. Rev. Mex. Fitopatol. 35(2), 170–85.
  • 27. Ashmawy, N.A., Behiry, S.I., Al-Huqail, A.A., Ali, H.M., Salem, M.Z.M. (2020). Bioactivity of selected phenolic acids and hexane extracts from Bougainvilla spectabilis and Citharexylum spinosum on the growth of Pectobacterium carotovorum and Dickeya solani bacteria: An opportunity to save the environment. Processes 8(4), 482. DOI: 10.3390/PR8040482.
  • 28. Roy, S., Nuckles, E., Archbold, D.D. (2018). Effects of phenolic compounds on growth of Colletotrichum spp. in vitro. Curr. Microbiol. 75(5), 550–6. DOI: 10.1007/s00284-017-1415-7.
  • 29. Ling, N., Zhang, W., Wang, D., Mao, J., Huang, Q., Guo, S., Shen, Q. (2013). Root exudates from grafted-root watermelon showed a certain contribution in inhibiting Fusarium oxysporum f. sp. niveum. PLoS One 8(5), e63383. DOI: 10.1371/journal.pone.0063383.
  • 30. Zhang, D., Ma, Z., Kai, K., Hu, T., Bi, W., Yang, Y., Shi, W., Wang, Z., Ye, Y. (2023). Chlorogenic acid induces endoplasmic reticulum stress in Botrytis cinerea and inhibits gray mold on strawberry. Sci. Hortic. 318, 112091. DOI: 10.1016/j. scienta.2023.112091.
  • 31. Martínez, G., Regente, M., Jacobi, S., Del Rio, M., Pinedo, M., de la Canal, L. (2017). Chlorogenic acid is a fungicide active against phytopathogenic fungi. Pestic. Biochem. Physiol. 140, 30–5. DOI: 10.1016/j.pestbp.2017.05.012.
  • 32. Xu, D., Deng, Y., Han, T., Jiang, L., Xi, P., Wang, Q., Jiang, Z., Gao, L. (2018). In vitro and in vivo effectiveness of phenolic compounds for the control of postharvest gray mold of table grapes. Postharvest Biol. Technol. 139, 106–14. DOI: 10.1016/j.postharvbio.2017.08.019.
  • 33. Roca-Couso, R., Flores-Félix, J.D., Rivas, R. (2021). Mechanisms of action of microbial biocontrol agents against botrytis cinerea. J. Fungi 7(12), 1045. DOI: 10.3390/jof7121045.
  • 34. Mendoza, L., Yañez, K., Vivanco, M., Melo, R., Cotoras, M. (2013). Characterization of extracts from winery by-products with antifungal activity against Botrytis cinerea. Ind. Crops Prod. 43(1), 360–4. DOI: 10.1016/j.indcrop.2012.07.048.
  • 35. Hapon, M.V., Boiteux, J.J., Fernández, M.A., Lucero, G., Silva, M.F., Pizzuolo, P.H. (2017). Effect of phenolic compounds present in argentinian plant extracts on mycelial growth of the plant pathogen Botrytis cinerea pers. Phyton-International J. Exp. Bot. 86, 270–7. DOI: 10.32604/phyton.2017.86.270.
  • 36. Azouaoui, T., Gaceb, A., Rahmania, T. (2013). The Effect in vitro of flavonoid aglycones extracts from roots of date palm cultivars on Fusarium oxysporum F. Sp. albedinis. Int. J. Agric. Eng. 7(9), 739–41.
  • 37. Kettout, T.A.A., Gaceb-Terrak, R., Boucenna-Mouzali, B., Rahmania, F. (2022). In vitro investigation of Fusarium oxysporum f. sp. albedinis under flavonic aglycones isolated from date palm leaves (Phoenix dactylifera L.). Analele Univ. Din Oradea, Fasc. Biol. 29(1), 54–60.
  • 38. Ahmad, H., Matsubara, Y. (2020). Antifungal effect of Lamiaceae herb water extracts against Fusarium root rot in Asparagus. J. Plant Dis. Prot. 127(2), 229–36. DOI: 10.1007/s41348-019-00293-x.
  • 39. Zhang, M., Wang, D., Gao, X., Yue, Z., Zhou, H. (2020). Exogenous caffeic acid and epicatechin enhance resistance against Botrytis cinerea through activation of the phenylpropanoid pathway in apples. Sci. Hortic. 268, 109348. DOI: 10.1016/j.scienta.2020.109348.
  • 40. Bilska, K., Stuper-Szablewska, K., Kulik, T., Buśko, M., Załuski, D., Jurczak, S., Perkowski, J. (2018). Changes in phenylpropanoid and trichothecene production by Fusarium culmorum and F. Graminearum sensu stricto via exposure to flavonoids. Toxins 10(3), 110. DOI: 10.3390/toxins10030110.
  • 41. Boucenna-Mouzali, B., Gaceb-Terrak, R., Azouaoui-Ait Kettout, T., Touam, D., Rahmania, F. (2021). Mobilization of trans-cinnamic acid, precursor of lignins in date palm roots over a compatible interaction with the pathogenic agent of bayoud disease, Fusarium oxysporum f. sp. albedinis. J. Fundam. Appl. Sci. 13(3), 1399–410. DOI: 10.4314/jfas.v13i3.17.
  • 42. Ain, Q.U., Asad, S., Ahad, K., Safdar, M.N., Jamal, A. (2022). Antimicrobial Activity of Pinus wallachiana leaf extracts against Fusarium oxysporum f. sp. cubense and analysis of its fractions by HPLC. Pathogens 11(3), 347. DOI: 10.3390/pathogens11030347.
  • 43. Nawrocka, J., Szczech, M., Małolepsza, U. (2018). Trichoderma atroviride enhances phenolic synthesis and cucumber protection against Rhizoctonia solani. Plant Prot. Sci. 54(1), 17–23. DOI: 10.17221/126/2016-PPS.
  • 44. Yu, S., Teng, C., Liang, J., Song, T., Dong, L., Bai, X., Jin, Y., Qu, J. (2017). Characterization of siderophore produced by Pseudomonas syringae BAF.1 and its inhibitory effects on spore germination and mycelium morphology of Fusarium oxysporum. J. Microbiol. 55(11), 877–84. DOI: 10.1007/s12275-017-7191-z.
  • 45. Jiang, S., Wang, C., Shu, C., Huang, Y., Yang, M., Zhou, E. (2018). Effects of catechol on growth, antioxidant enzyme activities and melanin biosynthesis gene expression of Rhizoctonia solani AG-1 IA. Can. J. Plant Pathol. 40(2), 220–8. DOI: 10.1080/07060661.2018.1437775.
  • 46. Al-Luhaiby, A.A.K., Hassan, A.K. (2020). Evaluation the ability of some organic compounds is protecting bean seedling against infection with Rhizoctonia solani. Plant Arch. 20(1), 86–90.
  • 47. Yang, J., Chen, Y.Z., Yu-Xuan, W., Tao, L., Zhang, Y. Di., Wang, S.R., Zhang, G.C., Zhang, J. (2021). Inhibitory effects and mechanisms of vanillin on gray mold and black rot of cherry tomatoes. Pestic. Biochem. Physiol. 175, 104859. DOI: 10.1016/j.pestbp.2021.104859.
  • 48. Wang, J., Wang, J., Bughio, M.A., Zou, Y., Prodi, A., Baffoni, L., Di Gioia, D. (2020). Flavonoid levels rather than soil nutrients is linked with Fusarium community in the soybean [Glycine max (L.) Merr.] rhizosphere under consecutive monoculture. Plant Soil 450(1–2), 201–15. DOI: 10.1007/s11104-020-04496-2.
  • 49. Safari, Z.S., Ding, P., Nakasha, J.J., Yusoff, S.F. (2021). Controlling Fusarium oxysporum tomato fruit rot under tropical condition using both chitosan and vanillin. Coatings 11(3), 367. DOI: 10.3390/coatings11030367.
  • 50. Shalapy, N.M., Kang, W. (2022). Fusarium oxysporum & Fusarium solani: identification, characterization, and differentiation the fungal phenolic profiles by HPLC and the fungal lipid profiles by GC-MS. J. Food Qual. 2022, DOI: 10.1155/2022/4141480.
  • 51. Guo, Y., Lv, J., Zhao, Q., Dong, Y., Dong, K. (2020). Cinnamic acid increased the incidence of Fusarium wilt by increasing the pathogenicity of Fusarium oxysporum and reducing the physiological and biochemical resistance of faba bean, which was alleviated by intercropping with wheat. Front. Plant Sci. 11, 608389. DOI: 10.3389/fpls.2020.608389.
  • 52. Cui, Y., Liu, H.G., Pan, H.Y., Yan, S.M., Qi, Z.X., Zhao, X.L., Luo, D.Q. (2022). Synthesis and antifungal activity of polyphenol ether derivatives against plant pathogenic fungi in vitro and in vivo. Rev. Roum. Chim. 67(6–7), 373–83. DOI: 10.33224/rrch.2022.67.6-7.04.
  • 53. Guimarães, A., Venâncio, A. (2022). The potential of fatty acids and their derivatives as antifungal agents: a review. Toxins 14(3), 188. DOI: 10.3390/toxins14030188.
  • 54. Amin, E., Tabanca, N., Wedge, D.E. (2014). Bioautography guided antifungal investigation of Adhatoda Vasica (Nees). World J. Pharm. Res. 3(2), 1815–23.
  • 55. Fayyaz, M., Akbar, M., Iqbal, M.S., Ahsan, T., Yuanhua, W., Khalil, T. (2021). Characterization of antifungal molecules of Calotropis procera against Fusarium oxysporum, the causal agent of Fusarium wilt in crops. Fresenius Environ. Bull. 30(06B), 1–7.
  • 56. Do, T.H.T., Pham, T.H., Pham, G. V., Vo, K.A., Nguyen, T.T.T., Vu, D.H., Nguyen, X.C., Vu, V.H., Nghiem, D.T., Choi, G.J., Nguyen Ngoc, H., Nguyen, H.T., Trinh, X.H., Le Dang, Q. (2022). Potential use of extracts and active constituent from Desmodium sequax to control fungal plant diseases. Int. J. Agric. Technol. 18(2), 489–502.
  • 57. Gaceb-Terrak, R., Rahmania, F. (2010). Analysis of lipids and others volatile compounds of Deglet Nour, cultivar of date palm (Phoenix dactylifera L.), by gas chromatography coupled to mass spectrometry. Acta Bot. Gall. 157(1), 127.
  • 58. Haque, E., Irfan, S., Kamil, M., Sheikh, S., Hasan, A., Ahmad, A., Lakshmi, V., Nazir, A., Mir, S.S. (2016). Terpenoids with antifungal activity trigger mitochondrial dysfunction in Saccharomyces cerevisiae. Microbiol. (Russian Fed.), 85(4), 436–43. DOI: 10.1134/S0026261716040093.
  • 59. Jasso de Rodríguez, D., Trejo-González, F.A., Rodríguez-García, R., Díaz-Jimenez, M.L.V., Sáenz-Galindo, A., Hernández-Castillo, F.D., Villarreal-Quintanilla, J.A., Peña-Ramos, F.M. (2015). Antifungal activity in vitro of Rhus muelleri against Fusarium oxysporum f. sp. lycopersici. Ind. Crops Prod. 75, 150–8. DOI: 10.1016/j.indcrop.2015.05.048.
  • 60. Ali, S.A., Abdelmoaty, H.S., Ramadan, H.H., Salman, Y.B. (2024). The endophytic fungus epicoccum nigrum: isolation, molecular identification and study its antifungal activity against phytopathogenic fungus Fusarium Solani. J. Microbiol. Biotechnol. Food Sci. 13(5), e10093–e10093. DOI: 10.55251/jmbfs.10093.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-44930751-9f5a-4f35-890c-46931a8aa2bc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.