PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effects of Hindrance Factors on a Squeeze Film of a Porous Bearing Lubricated With a Dehaven Fluid

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the paper the influence of the hindrance factors on the pressure distribution and loadcarrying capacity of a curvilinear thrust porous bearing is discussed. The equations of motion of a pseudo-plastic fluid of DeHaven are used to derive the Reynolds equation. The general considerations on the flow in a bearing clearance were presented. The analytical considerations on the flow in a thin porous layer composed of capillaries were also presented. Two models of the porous region were used, e.g.: capillary tube with constant cross-section and capillary tube with variable cross-section with rectilinear generatrices. Next, using the Morgan-Cameron approximation the modified Reynolds equation was obtained. As a result the formulae expressing pressure distribution and load-carrying capacity were obtained. Thrust radial bearing with a squeeze film of DeHaven fluid was considered as an example.
Rocznik
Strony
15--33
Opis fizyczny
Bibliogr. 40 poz., rys., tab.
Twórcy
autor
  • University of Zielona Góra, Faculty of Mechanical Engineering
  • a.walicka@ijame.uz.zgora.pl
autor
  • University of Zielona Góra, Faculty of Mechanical Engineering
autor
  • University of Zielona Góra, Faculty of Mechanical Engineering
autor
  • University of Zielona Góra, Faculty of Mechanical Engineering
Bibliografia
  • [1] Alazmi, B. and Vafai, K. (2002). Constant wall heat flux boundary conditions in porous media under local thermal non-equilibrium conditions. International Journal of Heat and Mass Transfer, 45(15):3071–3087.
  • [2] Amiri, A. and Vafai, K. (1998). Transient analysis of incompressible flow through a packed bed. International Journal of Heat and Mass Transfer, 41(24):4259–4279.
  • [3] Bear, J. and Bachmat, Y. (1990). Introduction to modeling of transport phenomena in porous media. Springer Science & Business Media.
  • [4] Greenkorn, R. A. (1983). Flow phenomena in porous media: fundamentals and applications in petroleum, water and food production.
  • [5] Hadim, H. and Vafai, K. (2000a). Overview of current computational studies of heat transfer in porous media and their applications—forced convection and multiphase heat transfer. Advances in Numerical Heat Transfer, 2:291–329.
  • [6] Hadim, H. and Vafai, K. (2000b). Overview of current computational studies of heat transfer in porous media and their applications—forced convection and multiphase heat transfer. Advances in Numerical Heat Transfer, 2:291–329.
  • [7] Hashimoto, H. and Wada, S. (1986). The effects of fluid inertia forces in parallel circular squeeze film bearings lubricated with pseudo-plastic fluids. Journal of tribology, 108(2):282–287.
  • [8] Jivkov, A. P., Hollis, C., Etiese, F., McDonald, S. A., and Withers, P. J. (2013). A novel architecture for pore network modelling with applications to permeability of porous media. Journal of Hydrology, 486:246–258.
  • [9] Joekar Niasar, V., Hassanizadeh, S., Pyrak-Nolte, L., and Berentsen, C. (2009). Simulating drainage and imbibition experiments in a high-porosity micromodel using an unstructured pore network model. Water resources research, 45(2).
  • [10] Khanafer, K., Bull, J. L., Pop, I., and Berguer, R. (2007). Influence of pulsatile blood flow and heating scheme on the temperature distribution during hyperthermia treatment. International Journal of Heat and Mass Transfer, 50(23-24):4883–4890.
  • [11] Kraemer, E. O. and Williamson, R. V. (1929). Internal friction and the structure of “solvated” colloids. Journal of Rheology (1929-1932), 1(1):76–92.
  • [12] Lin, J.-R. (2012). Non-newtonian squeeze film characteristics between parallel annular disks: Rabinowitsch fluid model. Tribology international, 52:190–194.
  • [13] Lin, J.-R., Chu, L.-M., Hung, C.-R., Lu, R., and Lin, M. (2013). Effects of nonnewtonian rheology on curved circular squeeze film: Rabinowitsch fluid model. Z. Naturforsch, 68:291–299.
  • [14] Mazaheri, A., Zerai, B., Ahmadi, G., Kadambi, J., Saylor, B., Oliver, M., Bromhal, G., and Smith, D. (2005). Computer simulation of flow through a lattice flow-cell model. Advances in water resources, 28(12):1267–1279.
  • [15] Nield, D. A., Bejan, A., et al. (2006). Convection in porous media, volume 3. Springer.
  • [16] Nsir, K. and Schäfer, G. (2010). A pore-throat model based on grain-size distribution to quantify gravity-dominated dnapl instabilities in a water-saturated homogeneous porous medium. Comptes Rendus Geoscience, 342(12):881–891.
  • [17] Peng, X. and Wu, H. (2005). Pore-scale transport phenomena in porous media. In Transport Phenomena in Porous Media III, pages 366–398. Elsevier.
  • [18] Rabinowitsch, B. (1929). Über die viskosität und elastizität von solen. Zeitschrift für physikalische Chemie, 145(1):1–26.
  • [19] Rajalingam, C., Rao, B., and Prabhu, B. (1978). The effect of a non-newtonian lubricant on piston ring lubrication. Wear, 50(1):47–57.
  • [20] Ratajczak, M., Walicka, A., Walicki, E., and Ratajczak, P. (2006a). Inertia effects in the curvilinear thrust bearing lubricated by a pseudo-plastic fluid of rotem-shinnar. Zagadnienia Eksploatacji Maszyn, 41(2):159–170.
  • [21] Ratajczak, M., Walicka, A., Walicki, E., and Ratajczak, P. (2006b). Reodynamics of lubricating curvilinear thrust bearings with ellis pseudo-plastic fluid. Zagadnienia Eksploatacji Maszyn, 41(2):147–158.
  • [22] Rotem, Z. and Shinnar, R. (1961). Non-newtonian flow-between parallel boundaries in linear movement. Chemical Engineering Science, 15(1-2):130–143.
  • [23] Sharma, S. C., Jain, S., and Sah, P. (2000). Effect of non-newtonian behaviour of lubricant and bearing flexibility on the performance of slot-entry journal bearing. Tribology International, 33(7):507–517.
  • [24] Singh, U. P., Gupta, R. S., and Kapur, V. K. (2011). On the steady performance of hydrostatic thrust bearing: Rabinowitsch fluid model. Tribology Transactions, 54(5):723–729.
  • [25] Swamy, S., Prabhu, B., and Rao, B. (1975). Stiffness and damping characteristics of finite width journal bearings with a non-newtonian film and their application to instability prediction. Wear, 32(3):379–390.
  • [26] Vafai, K. (2000). Handbook of porous media 1-st ed. Crc Press.
  • [27] Vafai, K. (2005). Handbook of porous media 2-st ed. Crc Press.
  • [28] Vafai, K. (2015). Handbook of porous media 3-st ed. Crc Press.
  • [29] Vafai, K. and Tien, C. (1982). Boundary and inertia effects on convective mass transfer in porous media. International Journal of Heat and Mass Transfer, 25(8):1183– 1190.
  • [30] Wada, S. and Hayashi, H. (1971). Hydrodynamic lubrication of journal bearings by pseudo-plastic lubricants: part 1, theoretical studies. Bulletin of JSME, 14(69):268–278.
  • [31] Walicka, A. (2002). Rotational flows of rheologically complex fluids in thin channels. Zielona Gora: University Press. Google Scholar.
  • [32] Walicka, A. (2017). Rheology of fluids in Mechanical Engineering. Oficyna Wydawnicza Uniwersytetu Zielonogórskiego.
  • [33] Walicka, A. (2018a). Flows of newtonian and power-law fluids in symmetrically corrugated cappilary fissures and tubes. International Journal of Applied Mechanics and Engineering, 23(1):187–211.
  • [34] Walicka, A. (2018b). Simulation of the flow through porous layers composed of converging-diverging capillary fissures or tubes. International Journal of Applied Mechanics and Engineering, 23(1):161–185.
  • [35] Walicka, A., Falicki, J., and Jurczak, P. (2018). Flows of dehaven fluid in symmetrically curved capillary fissures and tubes. International Journal of Applied Mechanics and Engineering, 23(2):521–550.
  • [36] Walicka, A., Jurczak, P., and Falicki, J. (2017). Curvilinear squeeze film bearing lubricated with a dehaven fluid or with similar fluids. International Journal of Applied Mechanics and Engineering, 22(3):697–715.
  • [37] Walicka, A. and Walicki, E. (2010a). Performance of the curvilinear thrust bearing lubricated by a pseudo-plastic fluid of rotem-shinnar. International Journal of Applied Mechanics and Engineering, 15(3):895–907.
  • [38] Walicka, A. and Walicki, E. (2010b). Pressure drops in convergent flows of polymer melts. International Journal of Applied Mechanics and Engineering, 15(4):1273– 1285.
  • [39] Walicka, A., Walicki, E., and Ratajczak, M. (1999). Pressure distribution in a curvilinear thrust bearing with pseudo-plastic lubricant. Applied Mechanics and Engineering, 4(spec.):81–88.
  • [40] Xiong, Q., Baychev, T. G., and Jivkov, A. P. (2016). Review of pore network modelling of porous media: experimental characterisations, network constructions and applications to reactive transport. Journal of contaminant hydrology, 192:101–117.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4491341d-bdb4-4d9b-815b-2f87f75d8222
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.