PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Kinetics study and reaction mechanism for titanium dissolution from rutile ores and concentrates using sulfuric acid solutions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Recent developments of acid leaching of titanium concentrates and ores have produced renewed industrial and commercial interest. However, the leaching kinetics and mechanism of these concentrates and ores had received little attention. This work, therefore, addresses the leaching kinetics and mechanism of Ti from a rutile concentrate in sulfuric acid solution. The leaching reaction was controlled by diverse parameters like temperature, particle size, acid concentration, liquid/solid (L/S) ratio, and stirring speed. The leaching kinetics was investigated using the Shrinking Core Model in order to determine the optimum criteria which control the reaction. The kinetics analysis showed that the rate of dissolution of Ti increased by increasing reaction temperature, L/S ratio, and stirring speed, while it decreased upon increasing particle size. The kinetics analysis revealed that the dissolution reaction is controlled by the chemical reaction at the rutile particle surface. Applying the Arrhenius relation, the apparent energy of activation Ea for the leaching reaction was calculated to be 23.4kJ/mol. A semi-empirical overall rate equation was introduced to describe the combined effects of the process variables upon the rate of the dissolution reaction: [formula]
Rocznik
Strony
138--148
Opis fizyczny
Bibliogr. 31 poz., rys. kolor., tab., wykr.
Twórcy
  • Nuclear Materials Authority, P.O. Box 530, El Maadi, Cairo, Egypt
  • Nuclear Materials Authority, P.O. Box 530, El Maadi, Cairo, Egypt
  • Nuclear Materials Authority, P.O. Box 530, El Maadi, Cairo, Egypt
  • Ain Shams University, Faculty of Science, Chemistry Department, Cairo, Egypt
Bibliografia
  • ABDEL-AAL, E.A., 2000. Kinetics of sulfuric acid leaching of low-grade zinc silicate ore. Hydrometallurgy, 55, 247–254.
  • ADEBAYO, A.O., IPINMOROTI, K.O., AJAYI, O.O., 2003. Dissolution Kinetics of Chalcopyrite with Hydrogen Peroxide in Sulphuric acid Medium. Chem. Biochem. Eng. Q. 17(3) 213–218.
  • AJEMBA, R.O., ONUKWULI, O.D., 2012. Application of the shrinking core model to the analysis of alumina leaching from Ukpor clay using nitric acid. International Journal of Engineering Research & Technology. Vol. 1 Issue 3.
  • BABA, A.A., ADEKOLA, F.A., TOYE, E.E., BALE, R.B., 2009. Dissolution Kinetics and Leaching of Rutile Ore in Hydrochloric Acid. Journal of Minerals & Materials Characterization & Engineering, Vol. 8, No.10, 787-801.
  • CHEN, D., ZHAO, L., QI, T., HU, G., ZHAO, H., LI, J., WANG, L., 2013. Desilication from titanium–vanadium slag by alkaline leaching. Trans. Nonferrous Met. Soc. China 23, 3076−3082.
  • DREISINGER, D., ABED, N., 2002. A fundamental study of the reductive leaching of chalcopyrite using metallic iron Part I: kinetic analysis. Hydrometallurgy 66(1–3), 37–57.
  • ESPIARI, S., RASHCHI, F., SADRNEZHAAD, S.K., 2006. Hydrometallurgical treatment of tailings with high zinc content. Hydrometallurgy, 82, 54–62.
  • FARAJI, F., ALIZADEH, A., RASHCHI, F., MOSTOUFI, N., 2020. Kinetics of leaching: a review. De Gruyter Rev Chem Eng. https://doi.org/10.1515/revce-2019-0073
  • GUPTA, C.K., 3002. Chemical Metallurgy: Principles and Practice. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, pp. 336-337.
  • HABASHI, F., 1969. Principles of Extractive Metallurgy, Vol. 1 Gordon & Breach, New York, pp. 153–163.
  • HOUZELOT, V., RANC, B., LAUBIE, B., SIMONNOT, M., 2018. Agromining of hyperaccumulatorbiomass: Study of leaching kinetics of extraction of nickel, magnesium, potassium,phosphorus, iron, and manganese from Alyssum murale ashes by sulfuric acid. Chem Eng Res Des., 129, 1–11.
  • HUANG, Y., CHAI, W., HAN, G., WANG, W., YANG, S., LIU, J., 2016. A perspective of stepwise utilization of Bayer red mud: step two-extracting and recovering Ti from Ti-enriched tailing with acid leaching and precipitate flotation. J. Hazard. Mater., 307, 318–327.
  • ISMAEL, M.H., EL HUSSAINI, O.M., EL-SHAHAT, M.F., 2020. New method to prepare high purity anatase TiO2through alkaline roasting and acid leaching from non-conventional minerals resource. Hydrometallurgy, 195, 105399.
  • JABIT, N.A, SENANAYAKE, G., 2018. Characterization and Leaching Kinetics of Ilmenite inHydrochloric Acid solution for Titanium Dioxide Production. IOP Conf. Series: Journalof Physics: Conf. Series. doi:10.1088/1742-6596/1082/1/012089
  • JACKSON, E., 1986. Hydrometallurgical extraction and reclamation. Ellis Horwood Ltd, Chichester.
  • LEVENSPIEL, O., 1999. Chemical reaction engineering. 3rd ed. John Wiley & Sons. New York. 566-588.
  • LI, M., WEI, C., QIU, S., ZHOU, X., LI, C., DENG, Z., 2010. Kinetics of vanadium dissolution from black shale in pressure acid leaching. Hydrometallurgy 104, 193–200.
  • NAYL, A.A., ISMAIL, I.M., ALY, H.F., 2009. Ammonium hydroxide decomposition of ilmenite slag. Hydrometallurgy 98, 196–200.
  • NIE, W., WEN, S., FENG, Q., LIU, D., ZHOU, Y., 2020. Mechanism and kinetics study of sulfuric acid leaching of titanium from titanium-bearing electric furnace slag. J Mater Res Technol., 9(2), 1750-1758.
  • NIU, L., ZHAND, T., NI, P., LU, G., OUYANG, K., 2013. Fluidized-bed chlorination thermodynamics and kinetics of Kenya natural rutile ore. Trans. Nonferrous Met. Soc. China 23, 34483455.
  • OLANIPEKUN, E., 1999. A kinetic study of the leaching of a Nigerian ilmenite ore by hydrochloric acid. Hydrometallurgy 53, 1–10.
  • PASPALIARIS Y., TSOLAKIS Y., 1987. Reaction kinetics for the leaching of iron oxides in diasporic bauxite from the Parnassus–Giona Zone Greece by hydrochloric acid. Hydrometallurgy 19, 259–266.
  • SACHKOV, V.I., NEFEDOV, R.A., ORLOV, V.V., 2019. Column simulation of Fe, Ti, V heap leaching from titanomagnetite ore. IOP Conf. Ser.: Mater. Sci. Eng. 597 012008. doi:10.1088/1757-899X/597/1/012008
  • SOHN, H.Y., WADSWORTH, M.E., 1979. Rate Processes of Extractive Metallurgy, Plenum Press, New York. DOI 10.1007/978-1-4684-9117-3
  • SUI, L., ZHAI, Y., 2014. Reaction kinetics of roasting high-titanium slag with concentrated sulfuric acid. Trans. Nonferrous Met. Soc. China 24, 848−853.
  • TANDA, B.C., EKSTEEN, J.J., ORABY, E.A., O'CONNOR, G.M., 2019. The kinetics of chalcopyrite leaching in alkaline glycine/glycinate solutions. Minerals Engineering 135, 118-128.
  • TSUCHIDA, H., NARITA, E., TAKEUCHI, H., ADACHI, M., OKABE, T., 1982. Manufacture of high pure titanium (IV) oxide by the chloride process: I. Kinetic study on leaching of ilmenite ore in concentrated hydrochloric acid solution. Bull. Chem. Soc. Jpn. 55(6), 1934–1938.
  • WANG, D., WANG, Z., QI, T., WANG, L., XUE, T.Y., 2016. Decomposition kinetics of titania slag in eutectic NaOHNaNO3 system. Metall. Mater. Trans. B. DOI: 10.1007/s11663-015-0491-y
  • WANG, D., CHU, J., LIU, Y., LI, J., XUE, T., WANG, W., QI, T., 2013. Novel Process for Titanium Dioxide Production from Titanium Slag: NaOH-KOH Binary Molten Salt Roasting and Water Leaching. Ind. Eng. Chem. Res., 52, 15756−15762.
  • YANG Z., LI H., YIN X., YAN Z., YAN X., XIE B., 2014. Leaching kinetics of calcification roasted vanadium slag with high CaO content by sulfuric acid. International Journal of Mineral Processing 133, 105–111.
  • ZHU, X., LI, W., GUAN, X., 2015. Kinetics of titanium leaching with citric acid in sulfuric acid from red mud. Trans. Nonferrous Met. Soc. China 25, 3139−3145
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-44904762-17e1-4273-86a8-b8adecff59ed
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.