Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Rock magnetism and anisotropy of magnetic susceptibility (AMS) results are reported for the first time from the southernmost (Nagercoil) charnockites of the Southern Granulite Terrane (SGT), south India. Forty-eight oriented block samples from nine sites have been collected and analysed. The integrated results of isothermal remanent magnetization (IRM), hysteresis loops, day plot, and thermomagnetic curves indicate the presence of magnetite with pseudo-single domain (PSD) and multidomain (MD) magnetite particles dominating the studied samples. Rock magnetic investigations reveal that the ratio of remanence (Mrs/Ms) range from 0.04 to 0.53 and the coercivity ratio (Hcr/Hc) between 1.19 and 5.17. The magnetization saturation was at 250–300 mT, and the coercive force ranged from 24 to 41 mT in all the samples. The results of the thermomagnetic study reveal the Curie temperatures between 560 °C and 580 °C, indicating the presence of magnetite. The observed principal AMS axes show mainly two types of magnetic fabrics. The first one shows the maximum susceptibility axes (K1) horizontal to sub-horizontal, and the minimum susceptibility axes (K3) plot near the pole. The second fabric describes that the minimum susceptibility axes (K3) show intermediate to vertical and the maximum susceptibility axes (K1) plot near the horizontal to sub-horizontal. AMS studies reveal that Nagercoil charnockites formed during the late-stage metamorphic event, magma flow (magnetic grains aligned) was sub-horizontal to horizontal, and the magnetic fabric grains are from prolate to oblate in shape.
Wydawca
Czasopismo
Rocznik
Tom
Strony
613--624
Opis fizyczny
Bibliogr. 56 poz.
Twórcy
autor
- CSIR-National Geophysical Research Institute (CSIR NGRI), Uppal Road, Hyderabad, Telangana 500007, India
autor
- CSIR-National Geophysical Research Institute (CSIR NGRI), Uppal Road, Hyderabad, Telangana 500007, India
- CSIR-National Geophysical Research Institute (CSIR NGRI), Uppal Road, Hyderabad, Telangana 500007, India
Bibliografia
- 1. Balsley JR, Buddington AF (1960) Magnetic susceptibility anisotropy and fabric of some Adirondack granites and orthogneisses. Am J Sci 258A:6–20
- 2. Bhadra BK (1999) Ductile shearing in Attur shear zone and its relation with Moyar shear zone, South India. Gondwana Res 3:361–369
- 3. Bhaskara Rao V, Lakshmipathi Raju A (1981) Remanent magnetism of charnockites from Eleswaram, Eastern Ghats. Geophys Res Bull 19:209–214
- 4. Bhimasankaram VLS (1964) A preliminary investigation of the palaeomagnetic directions of the charnockites from Andhra Pradesh. Curr Sci 33:465–466
- 5. Bingham C (1964) Distribution on the Sphere and on the Projective Plane (Ph.D. thesis). Yale University, New Haven CT
- 6. Condie KC, Allen P, Narayana BL (1982) Geochemistry of the Archaean low to high-grade transition in southern India. Contrib Mineral Petrol 81:157–167
- 7. Cox A, Doell RR (1967) Measurement of high coercivity magnetic anisotropy. In: Collinson DW, Creer KM, Runcorn SK (eds) Methods in Paleomagnetism. Elsevier, Amsterdam, pp 477–482
- 8. Day R, Fuller MD, Schmidt VA (1977) Hysteresis properties of titanomagnetites: Grain-size and compositional dependence. Phys Earth Planet Inter 13:260–267
- 9. Deng CL, Zhu RX, Verosub KL, Singer MJ, Vidic NJ (2004) Mineral magnetic properties of loess/paleosol couplets of the central loess plateau of China over the last 1.2 Myr. J Geophys Res Atmos 109:241–262
- 10. Deng CL, Shaw J, Liu QS, Pan YX, Zhu RX (2005) Mineral magnetic variation of the Jingbian loess/paleosol sequence in the northern Loess Plateau of China: implications for quaternary development of Asian aridification and cooling. Earth Planet Sci Lett 241:248–259
- 11. Drury SA, Holt RW (1980) The tectonic framework of the south India craton:a reconnaissance involving LANDSAT imagery. Tectonophysics 65(1–2):1015
- 12. Drury SA, Harris NBW, Holt RW, Reeves-Smith GJ, Wightman RT (1984) Precambrian tectonics and crustal evolution in southern India. J Geol 92:3–20
- 13. Fermor L (1936) An attempt at the correlation of the ancient schistose formations of Peninsular India. Memoir of the Geological survey of India 70 part I 51
- 14. Ferre EC, Martín-Hernández F, Teyssier C, Jackson M (2004) Paramagnetic and ferrimagnetic anisotropy of magnetic susceptibility in migmatites: measurements in high and low fields and kinematic implications. Geophys J Int 157:1119–1129
- 15. Ferré EC, Gébelin A, Till JL, Sassier C, Burmeister CK (2014) Deformation and magnetic fabrics in ductile shear zones: a review. Tectonophysics 629:179–188
- 16. Halls HC, Kumar A, Srinivasan R, Hamilton MA (2007) Paleomagnetism and U-Pb geochronology of easterly trending dykes in the Dharwar craton, India: feldspar clouding, radiating dyke swarms and the position of India at 2.37 Ga. Precambrian Res 155:47–68
- 17. Harley SL (1989) The origins of granulites: a metamorphic perspective. Geol Mag 126:215–247
- 18. Holland TH (1900) The charnockite series, a group of Archean hypersthenic rocks in Peninsular India. Geol Survey India Mem 28:182–249
- 19. Hrouda F (1982) Magnetic anisotropy of rocks and its application in geology and geophysics. Geophys Surv 5(1):37–82
- 20. Hrouda F, Janák F (1976) The changes in shape of the magnetic susceptibility ellipsoid during progressive metamorphism and deformation. Tectonophysics 34:135–148
- 21. Jelinek V (1978) Statistical processing of anisotropy of magnetic susceptibility measured on groups of specimens. Stud Geophys Geod 22:50–62
- 22. Jelinek V (1981) Characterization of the magnetic fabric of the rocks. Tectonophysics 79:63–67
- 23. Katz MB (1978) Tectonic evolution of the Archaean granulite facies belt of Sri Lanka-South India. J Geol Soc India 19:185–205
- 24. Knight MD, Walker G, Ellwood B, Diehl J (1986) Stratigraphy, paleomagnetic, and magnetic fabric of the Toba Tuffs: Constraints on the source and eruptive styles. J Geophys Res 91:10355–10382
- 25. Kumar A, Pande K, Venkatesan TR, Bhaskar Rao YJ (2001) The Karnataka late Cretaceous dyke as products of the Marion hotspot at the Madagascar-India break up event: evidence from Ar–Ar geochronology and geochemistry. Geophys Res Lett 28:2715–2718
- 26. Le Maitre RW (2002) Igneous rocks: a classification and glossary of terms. Cambridge University Press, Cambridge, UK
- 27. Liu QS, Deng CL, Yu Y, Torrent J, Jackson M, Banerjee SK, Zhu RX (2005) Temperature dependence of magnetic susceptibility in an argon environment: implications for pedogenesis of Chinese loess/palaeosols. Geophys J Int 161:102–112
- 28. Lowrie W (1990) Identification of ferromagnetic minerals in a rock by coercivity and unblocking temperature properties. Geophys Res Lett 17:159–162
- 29. MacDonald WD, Palmer HC (1990) Flow directions in ash-flow tuffs: a comparison of geological and magnetic susceptibility measurements, Tshirege member (upper Bandelier Tuff), Valles Caldera. New Mexico, USA. Bull Volcanol 53:45–59
- 30. Mondal S, Piper JDA, Hunt L, Bandopadhyay G, Basu Mallik S (2009) Paleomagnetic and rock magnetic study of charnockites from Tamilnadu, India, and the Ur protocontinent in early Paleoproterozoic times. J Asian Earth Sci 49:493–506
- 31. Nagaraju E, Parashuramulu V, Kumar A, Srinivas Sarma D (2018a) Paleomagnetism and geochronological studies on a 450 km long 2216 Ma dyke from the Dharwar craton, southern India. Phys Earth Planet Inter 274:222–231
- 32. Nagaraju E, Parashuramulu V, Babu NR, Narayana AC (2018b) A 2207 Ma radiating mafic dyke swarm from eastern Dharwar craton, Southern India: drift history through Paleoproterozoic. Precambrian Res 317:89–100. https://doi.org/10.1016/j.precamres.2018.08.009
- 33. Naqvi SM, Rogers JJW (1987) Precambrian geology of India. Oxford University Press, Oxford, p 233
- 34. Nomade S, Theveniaut H, Chen Y, Pouclet A, Rigollet C (2000) Paleomagnetic study of French Guyana early Jurassic dolerites: hypothesis of a multistage magmatic event. Earth Planet Sci Lett 184(1):155–168
- 35. Parés JM, van der Pluijm BA (2002) Evaluating magnetic lineations (AMS) in deformed rocks. Tectonophysics 350:283–298
- 36. Pichamuthu CS (1965) Regional metamorphism and charnockitization in Mysore state, India. Indian Mineral 6:46–49
- 37. Piper JDA, Basu Mallik K, Bandopadhyay G, Mondal S, Das AK (2003) Paleomagnetic and Rock magnetic study of deeply- exposed continental crustal section in the charnockite Belt of southern India: Implications to crustal magnetization and Paleoproterozoic continental nuclie. Precambrian Res 121:185–219
- 38. Plavsa D, Collins AS, Foden JF, Kropinski L, Santosh M, Chetty TRK, Clark C (2012) Delineating crustal domains in Peninsular India: age and chemistry of orthopyroxene-bearing felsic gneisses in the Madurai block. Precambrian Res 198–199:77–93. https://doi.org/10.1016/j.precamres.2011.12.013
- 39. Plavsa D, Collins AS, Payne JL, Foden JD, Clark C, Santosh M (2014) Detrital zircons in basement metasedimentary protoliths unveil the origins of southern India. Geol Soc Am Bull 126(5–6):791–811. https://doi.org/10.1130/B30977
- 40. Plavsa D, Collins AS, Foden JD, Clark C (2015) The evolution of a Gondwanan collisional orogen: a structural and geochronological appraisal from the Southern Granulite terrane, south India. Tectonics 34:820–857. https://doi.org/10.1002/2014TC003706
- 41. Poornachandra Rao GVS, Mallikharjuna Rao J (2006) A palaeomagnetic study of charnockites from Madras block, Southern Granulite Terrain, India. Gondwana Res 10:57–65
- 42. Prasad JN, Satyanarayana KVV, Gawali PB (1999) Paleomagnetic and low field AMS of Proterozoic Dykes and their basement rocks around Harohalli, South India. J Geol Soc India 54:57–67
- 43. Radhakrishna BP, Naqvi SM (1986) Precambrian continental crust of India and its evolution. J Geol 94:145–166
- 44. Radhakrishna T, Mathai J, Yoshida M (1990) Geology and structure of the high-grade rocks from Punalur–Achankovil sector, south India. J Geol Soc India 35:263–272
- 45. Raith M, Karmakar S, Brown M (1997) Ultra-high-temperature metamorphism and multistage decompressional evolution of sapphirine granulites from the Palni hill ranges, southern India. J Metamorph Geol 15:379–399
- 46. Rajesh HM, Santosh M (2004) Charnockitic magmatism in southern India. Proc Indian Acad Sci Earth Planet Sci 113(4):565–585
- 47. Rajesh HM, Santosh M (2012) Charnockites and charnockites. Geosci Front 3(6):737–744. https://doi.org/10.1016/j.gsf.2012.07.001
- 48. Ramesh Babu N, Venkateshwarlu M, Shankar R, Nagaraj E, Parashuramulu V (2018) New paleomagnetic results on ~2367 Ma Dharwar giant dyke swarm, Dharwar craton, Southern India: Implications for Paleoproterozoic continental reconstruction. J Earth Syst Sci 127:3. https://doi.org/10.1007/s12040-017-0910-3
- 49. Ramesh Babu N, Nagaraju E, Parusaramulu V, Venkateshwarlu M (2020) Preliminary anisotropy of magnetic susceptibility studies on 2367 Ma Bangalore-Karimnagar giant dyke swarm, southern India: implications for magma flow. Phys Earth Planet Inter 306:106540
- 50. Raposo MIB, Egydio-Silva M (2001) Magnetic fabric studies of high-grade metamorphic rocks from the Juiz de for a complex, Ribeira belt. Southeast Brazil Int Geol Rev 43(5):441–456
- 51. Srivastava RK (2010) Dyke swarms: keys for geodynamic interpretation. Springer, Heidelberg Dordrecht, London, New York, IX
- 52. Stacey FD (1960) Magnetic anisotropy of igneous rocks. J Geophys Res 65(8):2429–2442
- 53. Tarling DH, Hrouda F (1993) Magnetic Anisotropy of rocks. Chapman & Hall, London and New York, p 247
- 54. Viegas GF, Archanjo CJ, Vauchez A (2013) Fabrics of migmatites and the relationships between partial melting and deformation in high-grade transpressional shear zones: the Espinho Branco anatexite (Borborema province, NE Brazil). J Struct Geol 48:45–56
- 55. Vijay Kumar T, Bhaskar Rao YJ, Plavsa D, Collins AS, Tomson JK, Vijaya Gopal B, Babu EVSK (2017) Zircon U-Pb ages and Hf isotopic systematics of charnockite gneisses from the Ediacaran-Cambrian high-grade metamorphic terranes, southern India: constraints on crust formation, recycling, and Gondwana correlations. Geol Soc Am Bull 129(5–6):625–648
- 56. Weaver BL (1980) Rare earth element geochemistry of Madras granulites. Contrib Mineral Petrol 71:271–279
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-44886bff-3e98-4489-9271-1a1f7c0770b9