PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Metody syntez i badania właściwości grafenu

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Methods of synthesis and testing properties of graphene
Języki publikacji
PL
Abstrakty
PL
Grafen i jego pochodne są materiałami o unikalnych właściwościach biochemicznych, elektrycznych, optycznych i mechanicznych, co wzbudza zainteresowanie w wielu ośrodkach badawczych. Z tego powodu, na podstawie dostępnej literatury, podjęliśmy próbę zestawienia i interpretacji wyników badań uprzednio wymienionych materiałów otrzymanych różnymi metodami. Analizując wyniki badań różnych materiałów grafenopodobnych, można przypuszczać, że najbardziej ekonomiczną metodą otrzymywania grafenu jest zmodyfikowana metoda Hummersa. Najlepszymi technikami pomiarowymi są spektroskopia Ramana i rentgenowska spektroskopia fotoelektronów. Obydwie techniki umożliwiają ocenę składu chemicznego badanych próbek oraz stopnia ich zdefektowania. W pracy przedstawiono również niektóre z licznych zastosowań tych materiałów oraz wnioski.
EN
Graphene and its derivatives are the materials with unique biochemical, electric, optical and mechanical properties, which has aroused interest in many research centres. Therefore, on the basis of the accessible literature, we attempt to collate and interpret the results of the aforesaid materials obtained by different methods. Analysing the results for the different graphene-like materials one can suppose, that the most economical method of the graphene synthesis is the modified Hummers’ method. The most useful testing techniques are the Raman spectroscopy and the X-ray photoelectron spectroscopy. Both techniques enable the estimation of the chemical composition and the presence of defect structure in the materials. Some of the many applications of the materials and conclusions are also presented in our review.
Twórcy
autor
  • Instytut Chemii WAT, Warszawa, Polska
autor
  • Instytut Chemii WAT, Warszawa, Polska
autor
  • Instytut Chemii WAT, Warszawa, Polska
Bibliografia
  • [1] Singh V., Joung D., Zhai L., Das S., Khondaker S. I., Seal S., Graphene based materials: Past, present and future, Progress in Materials Science 56, 8 (2011) 1178-1271.
  • [2] Dreyer D. R., Ruoff R. S., Bielawski C. W., From Conception to Realization: An Historial Account of Graphene and Some Perspectives for Its Future, Angew. Chem. Int. Ed. 49, 49 (2010) 9336-9344.
  • [3] Geim A. K., Graphene prehistory, Phys. Scr. T146 (2012) 014003 (4pp).
  • [4] Shing T. W., Plasma-assisted growth and nitrogen-doping of graphene, 2012.
  • [5] Hummers Jr W. S., Offeman R. E., Preparation of Graphitic Oxide, Journal of the American Chemical Society 80, 6 (1958) 1339.
  • [6] Liu S., Zeng T. H., Hofmann M., Burcombe E., Wei J., Jiang R., Kong J., Chen Y., Antibacterial Activity of Graphite, Graphite Oxide, Graphene Oxide, and Reduced Graphene Oxide: Membrane and Oxidative Stress, ACS Nano 5, 9 (2011) 6971-6980.
  • [7] Krishnamoorthy K., Umasuthan N., Mohan R., Lee J., Kim S. J., Investigation of the Antibacterial Activity of Graphene Oxide Nanosheets, Sci. Adv. Mater. 4, 11 (2012) 1-7.
  • [8] Gurunathan S., Han J. W., Dayem A. A., Eppakayala V., Park M. R., Kwon D. N., Kim J. H., Antibacterial activity of dithiothreitol reduced graphene oxide, Journal of Industrial and Engineering Chemistry 19, 4 (2013) 1280-1288.
  • [9] Chen J., Peng H., Wang X., Shao F., Yuan Z., Han H., Graphene oxide exhibits broad-spectrum antimicrobial activity against bacterial phytopathogens and fungal conidia by intertwining and membrane perturbation, Nanoscale 6, 3 (2014) 1879-1889.
  • [10] Ruiz O. N., Fernando K. A. S., Wang B., Brown N. A., Luo P. G., McNamara N. D., Vangsness M., Sun Y. P., Bunker C. E., Graphene Oxide: A Nonspecific Enhancer of Cellular Growth, ACS Nano 5, 10 (2011) 8100-8107.
  • [11] Bao Q., Zhang D., Qi P., Synthesis and characterization of silver nanoparticle and graphene oxide nanosheet composites as a bactericidal agent for water disinfection, Journal of Colloid and Interface Science 360, 2 (2011) 463-470.
  • [12] Park J. H., Sudarshan T. S., ed., Surface Engineering Series Volume 2, Chemical Vapor Deposition, ASM International, 2001.
  • [13] Somani P. R., Somani S. P., Umeno M., Planer nanographenes from camphor by CVD, Chemical Physics Letters 430, 1 (2006) 56-59.
  • [14] Kim K. S., Zhao Y., Jang H., Lee S. Y., Kim J. M., Kim K. S., Ahn J. H., Kim P., Choi J. Y., Hong B. H., Large-scale pattern growth of graphene films for stretchable transparent electrodes, Nature 457, 7230 (2009) 706-710.
  • [15] Cao H., Yu Q., Colby R., Pandey D., Park C. S., Lian J., Zemlyanov D., Childres I., Drachev V., Stach E. A., Hussain M., Li H., Pei S. S., Chen Y. P., Large-scale graphitic thin films synthesized on Ni and transferred to insulators: Structural and electronic properties, J. Appl. Phys. 107, 4 (2010) 044310 (7pp).
  • [16] Liu W., Jackson B. L., Zhu J., Miao C. Q., Chung C. H., Park Y. J., Sun K., Woo J., Xie Y. H., Large Scale Pattern Graphene Electrode for High Performance in Transparent Organic Single Crystal Field-Effect Transistors, ACS Nano 4, 7 (2010) 3927-3932.
  • [17] Chae S. J., Güneş F., Kim K. K., Kim E. S., Han G. H., Kim S. M., Shin H. J., Yoon S. M., Choi J. Y., Park M. H., Yang C. W., Pribat D., Lee Y. H., Synthesis of Large-Area Graphene Layers on Poly-Nickel Substrate by Chemical Vapor Deposition: Wrinkle Formation, Adv. Mater. 21, 22 (2009) 2328-2333.
  • [18] Strudwick A. J., Weber N. E., Schwab M. G., Kettner M., Weitz R. T., Wünsch J. R., Müllen K., Sachdev H., Chemical Vapor Deposition of High Quality Graphene Films from Carbon Dioxide Atmospheres, ACS Nano 9, 1 (2015) 31-42.
  • [19] Yu Q. K., Lian J., Siriponglert S., Li H., Chen Y. P., Pei S. S., Graphene segregated on Ni surfaces and transferred to insulators, Appl. Phys. Lett. 93, 11 (2008) 113103 (3pp).
  • [20] Dong X., Wang P., Fang W., Su C. Y., Chen Y. H., Li L. J., Huang W., Chen P., Growth of large-sized graphene thin-films by liquid precursor-based chemical vapor deposition under atmospheric pressure, Carbon 49, 11 (2011) 3672-3678.
  • [21] Guermoune A., Chari T., Popescu F., Sabri S. S., Guillemette J., Skulason H. S., Szkopek T., Siaj M., Chemical vapor deposition synthesis of graphene on copper with methanol, ethanol, and propanol precursors, Carbon 49, 13 (2011) 4204-4210.
  • [22] Wu W., Liu Z., Jauregui L. A., Yu Q., Pillai R., Cao H., Bao J., Chen Y. P., Pei S. S., Wafer-scale synthesis of graphene by chemical vapor deposition and its application in hydrogen sensing, Sensors and Actuators B 150, 1 (2010) 296-300.
  • [23] Novoselov K. S., Jiang D., Schedin F., Booth T. J., Khotkevich V. V., Morozov S. V., Geim A. K., Two-dimensional atomic crystals, PNAS 102, 30 (2005) 10451-10453.
  • [24] Novoselov K. S., Geim A. K., Morozov S. V., Jiang D., Zhang Y., Dubonos S. V., Grigorieva I. V., Firsov A. A., Electric Field Effect in Atomically Thin Carbon Films, Science 306, 5696 (2004) 666-669.
  • [25] Schniepp H. C., Li J. L., McAllister M. J., Sai H., Herrera-Alonso M., Adamson D. H., Prud’homme R. K., Car R., Saville D. A., Aksay I. A., Functionalized Single Graphene Sheets Derived from Splitting Graphite Oxide, J. Phys. Chem. B 110, 17 (2006) 8535-8539.
  • [26] Lv W., Tang D. M., He Y. B., You C. H., Shi Z. Q., Chen X. C., Chen C. M., Hou P. X., Liu C., Yang Q. H., Low-Temperature Exfoliated Graphenes: Vacuum-Promoted Exfoliation and Electrochemical Energy Storage, ACS Nano 3, 11 (2009) 3730-3736.
  • [27] McAllister M. J., Li J. L., Adamson D. H., Schniepp H. C., Abdala A. A., Liu J., Herrera-Alonso M., Milius D. L., Car R., Prud’homme R. K., Aksay I. A., Single Sheet Functionalized Graphene by Oxidation and Thermal Expansion of Graphite, Chem. Mater. 19, 18 (2007) 4396-4404.
  • [28] Liu N., Luo F., Wu H., Liu Y., Zhang C., Chen J., One-Step Ionic-Liquid-Assisted Electrochemical Synthesis of Ionic-Liquid-Functionalized Graphene Sheets Directly from Graphite, Adv. Funct. Mater. 18, 10 (2008) 1518-1525.
  • [29] Su C. Y., Lu A. Y., Xu Y., Chen F. R., Khlobystov A. N., Li L. J., High-Quality Thin Graphene Films from Fast Electrochemical Exfoliation, ASC Nano 5, 3 (2011) 2332-2339.
  • [30] Lu J., Yang J. X., Wang J., Lim A., Wang S., Ping Loh K., One-Pot Synthesis of Fluorescent Carbon Nanoribbons, Nanoparticles, and Graphene by the Exfoliation of Graphite in Ionic Liquids, ASC Nano 3, 8 (2009) 2367-2375.
  • [31] Zhu Y., Murali S., Stoller M. D., Velamakanni A., Piner R. D., Ruoff R. S., Microwave assisted exfoliation and reduction of graphite oxide for ultracapacitors, Carbon 48, 7 (2010) 2106-2122.
  • [32] Pu N. W., Wang C. A., Sung Y., Liu Y. M., Ger M. D., Production of few-layer graphene by supercritical CO₂ exfoliation of graphite, Materials Letters 63, 23 (2009) 1987-1989.
  • [33] Huang H., Chen W., Chen S., Shen Wee A. T., Bottom-up Growth of Epitaxial Graphene on 6H-SiC(0001), ASC Nano 2, 12 (2008) 2513-2518.
  • [34] Tedesco J. L., Jernigan G. G., Culbertson J. C., Hite J. K., Yang Y., Daniels K. M., Myers-Ward R. L., Eddy Jr. C. R., Robinson J. A., Trumbull K. A., Wetherington M. T., Campbell P. M., Gaskill D. K., Morphology characterization of argon-mediated epitaxial graphene on C-face SiC, Appl. Phys. Lett. 96, 22 (2010) 222103 (3pp).
  • [35] Pallecchi E., Lafont F., Cavaliere V., Schopfer F., Mailly D., Poirier W., Ouergh A., High Electron Mobility in Epitaxial Graphene on 4H-SiC(0001) via post-growth annealing under hydrogen, Scientific Reports 4, 4558 (2014) 1-7.
  • [36] Hwang J., Kim M., Shields V. B., Spencer M. G., CVD growth of SiC on sapphire substrate and graphene formation from the epitaxial SiC, Journal of Crystal Growth 366 (2013) 26-30.
  • [37] Hu W., Peng C., Luo W., Lv M., Li X., Li D., Huang Q., Fan C., Graphene-Based Antibacterial Paper, American Chemical Society 4, 7 (2010) 4317-4323.
  • [38] Skierski J., Badanie działania cytotoksycznego substancji chemicznych, Postępy Biologii Komórki 35, 24 (2008) 147-163.
  • [39] Balandin A. A., Ghosh S., Bao W., Calizo I., Teweldebrhan D., Miao F., Lau C. N., Superior Thermal Conductivity of Single-Layer Graphene, Nano Lett. 8, 3 (2008) 902-907.
  • [40] Schwamb T., Burg B. R., Schirmer N. C., Poulikakos D., An electrical method for the measurement of the thermal and electrical conductivity of reduced graphene oxide nanostructures, Nanotechnology 20, 40 (2009) 405704 (5pp).
  • [41] Jauregui L. A., Yue Y., Sidorov A. N., Hua J., Yue Q., Lopez G., Jalilian R., Benjamin D. K., Delk D. A., Wu W., Liu Z., Wang X., Jiang Z., Ruang X., Bao J., Pei S. S., Chen Y. P., Thermal Transport in Graphene Nanostructures: Experiments and Simulations, ECS Trans. 28, 5 (2010) 73-83.
  • [42] Kittel C., Wstęp do fizyki ciała stałego, Wydawnictwo Naukowe PWN, Warszawa 1999.
  • [43] Bolotin K. I., Sikes K. J., Jianga Z., Klima M., Fudenberg G., Hone J., Kim P., Stormer H. L., Ultrahigh electron mobility in suspended graphene, Solid State Communications 146, 9 (2008) 351-355.
  • [44] Nair R. R., Blake P., Grigorenko A. N., Novoselov K. S., Booth T. J., Stauber T., Peres N. M. R., Geim A. K., Fine Structure Constant Defines Visual Transparency of Graphene, Science 320, 5881 (2008) 1308.
  • [45] Lee C., Wei X., Kysar J. W., Hone J., Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene, Science 321, 5887 (2008) 385-388.
  • [46] Li Z., Guo Q., Li Z., Fan G., Xiong D. B., Su Y., Zhang J., Zhang D., Enhanced Mechanical Properties of Graphene (Reduced Graphene Oxide)/Aluminum Composites with a Bioinspired Nanolaminated Structure, Nano Lett. 15, 12 (2015) 8077-8083.
  • [47] Ranjbartoreh A. R., Wang B., Shen X., Wang G., Advanced mechanical properties of graphene paper, J. Appl. Phys. 109, 1 (2011) 014306 (6pp).
  • [48] Xin G., Yao T., Sun H., Scott S. M., Shao D., Wang G., Lian J., Highly thermally conductive and mechanically strong graphene fibers, Science 349, 6252 (2015) 1083-1087.
  • [49] Chen S., Wu Q., Mishra C., Kang J., Zhang H., Cho K., Cai W., Balandin A. A., Ruoff R. S., Thermal conductivity of isotopically modified graphene, Nature Materials 11, 3 (2012) 203-207.
  • [50] Lide D. R., ed., CRC Handbook of Chemistry and Physics, Internet Version 2005, <http://www.hbcpnetbase.com>, CRC Press, Boca Raton, FL, 2005.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4487b30f-81e2-4222-96f5-d5398887553e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.