PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Reduction of optical noise in near-infrared range laser hygrometry

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A contactless laser hygrometer based on light absorption by H2O molecules at 1392.5 nm is described. However, measurement results can be affected by optical noise when applied to an atmospheric tunnel or glass cuvette. The noises (occurring in the form of periodic fringes in the recorded spectrum) come from unexpected interference of the light beams reflected from surfaces of the windows or other optical elements. The method of their suppression is described in this article. It is based on wavelength modulation and signal averaging over the fringes period. Also, an experiment confirming the usefulness of this method is described here.
Rocznik
Strony
169--181
Opis fizyczny
Bibliogr. 24 poz., rys., tab., wykr., wzory
Twórcy
  • Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-093 Warsaw, Pasteura 5, Poland
  • Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-093 Warsaw, Pasteura 5, Poland
autor
  • Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-093 Warsaw, Pasteura 5, Poland
Bibliografia
  • [1] Korotcenkov, G. (2018). Handbook of Humidity Measurement, Volume 1: Spectroscopic Methods of Humidity Measurement. CRC Press.
  • [2] Abe, H., & Yamada, K. M. (2011). Performance evaluation of a trace-moisture analyzer based on cavity ring-down spectroscopy: Direct comparison with the NMIJ trace-moisture standard. Sensors and Actuators A: Physical, 165(2), 230-238. https://doi.org/10.1016/j.sna.2010.11.005
  • [3] Buchholz, B., Böse, N., & Ebert, V. (2014). Absolute validation of a diode laser hygrometer via intercomparison with the German national primary water vapor standard. Applied Physics B, 116(4), 883-899. https://doi.org/10.1007/s00340-014-5775-4
  • [4] Filges, A., Gerbig, C., Rella, C. W., Hoffnagle, J., Smit, H., Krämer, M., & Ebert, V. (2018). Evaluation of the IAGOS-Core GHG package H2O measurements during the DENCHAR air-borne inter-comparison campaign in 2011. Atmospheric Measurement Techniques, 11(9), 5279-5297. https://doi.org/10.5194/amt-11-5279-2018
  • [5] Stacewicz, T., & Magryta, P. (2018). Highly sensitive airborne open path optical hygrometer for upper air measurements - proof of concept. Metrology and Measurement Systems, 793-805. https://doi.org/10.24425/mms.2018.124877
  • [6] Nowak, J. L., Magryta, P., Stacewicz, T., Kumala, W., & Malinowski, S. P. (2016). Fast optoelectronic sensor of water concentration. Optica Applicata, 46(4), 607-618. https://doi.org/10.5277/oa160408
  • [7] Grosz, R., Nowak, J., Niedermeier, D., Mijas, J., Frey, W., Ort, L., & Voigtländer, J. (2021, March). Contactless and high-frequency optical hygrometry in LACIS-T. In EGU General Assembly Conference Abstracts (pp. EGU21-14538).
  • [8] Nowak, J. L., Grosz, R., Frey, W., Niedermeier, D., Mijas, J., Malinowski, S. P., Ort, L., Schmalfuß, S., Stratmann, F., Voigtländer, J., & Stacewicz, T. (2022). Contactless Optical Hygrometry in LACIS-T. Atmospheric Measurement Techniques, 15, 4075-4089. https://doi.org/10.5194/amt-15-4075-2022
  • [9] Rothman, L. S., Gordon, I. E., Babikov, Y., Barbe, A., Benner, D. C., Bernath, P. F., & Wagner, G. (2013). The HITRAN2012 molecular spectroscopic database. Journal of Quantitative Spectroscopy and Radiative Transfer, 130, 4-50. https://doi.org/10.1016/j.jqsrt.2013.07.002
  • [10] Demtröder, W. (2013). Laser spectroscopy: Basic Concepts and Instrumentation. Springer Science & Business Media.
  • [11] Luo, J., Smith, N. J., Pantano, C. G., & Kim, S. H. (2018). Complex refractive index of silica, silicate, borosilicate, and boroaluminosilicate glasses - Analysis of glass network vibration modes with specular-reflection IR spectroscopy. Journal of Non-Crystalline Solids, 494, 94-103. https://doi.org/10.1016/j.jnoncrysol.2018.04.050
  • [12] Fried, A., Drummond, J. R., Henry, B., & Fox, J. (1990). Reduction of interference fringes in small multipass absorption cells by pressure modulation. Applied Optics, 29(7), 900-902. https://doi.org/10.1364/AO.29.000900
  • [13] Silver, J. A., & Stanton, A. C. (1988). Optical interference fringe reduction in laser absorption experiments. Applied Optics, 27(10), 1914-1916. https://doi.org/10.1364/AO.27.001914
  • [14] Kronfeldt, H. D. (1993, April). Piezo-enhanced multireflection cells applied for in-situ measurements of trace-gas concentrations. In Lens and Optical Systems Design (Vol. 1780, pp. 512-519). SPIE. https://doi.org/10.1117/12.142854
  • [15] Liger, V. V. (1999). Optical fringes reduction in ultrasensitive diode laser absorption spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 55(10), 2021-2026. https://doi.org/10.1016/S1386-1425(99)00074-8
  • [16] Webster, C. R. (1985). Brewster-plate spoiler: a novel method for reducing the amplitude of interference fringes that limit tunable-laser absorption sensitivities. JOSA B, 2(9), 1464-1470. https://doi.org/10.1364/JOSAB.2.001464
  • [17] Li, C., Guo, X., Ji, W., Wei, J., Qiu, X., & Ma, W. (2018). Etalon fringe removal of tunable diode laser multi-pass spectroscopy by wavelet transforms. Optical and Quantum Electronics, 50, 1-11. https://doi.org/10.1007/s11082-018-1539-4
  • [18] Li, C., Shao, L., Meng, H., Wei, J., Qiu, X., He, Q., Ma, W., Deng, L., & Chen, Y. (2018). High-speed multi-pass tunable diode laser absorption spectrometer based on frequency-modulation spectroscopy. Optics Express, 26(22), 29330-29339. https://doi.org/10.1364/OE.26.029330
  • [19] Lee, L., Park, H., Ko, K. H., Kim, T. S., & Jeong, D. Y. (2010). Reduction of fringe noise in a multi-pass absorption cell by using the wavelength modulation technique. Journal of the Korean Physical Society, 57(2), 364-368. https://doi.org/10.3938/jkps.57.364
  • [20] Nikodem, M., & Wysocki, G. (2012). Chirped laser dispersion spectroscopy for remote open-path trace-gas sensing. Sensors, 12(12), 16466-16481. https://doi.org/10.3390/s121216466
  • [21] Winkowski, M., & Stacewicz, T. (2021). Optical interference suppression using wavelength modulation. Optics Communications, 480, 126464. https://doi.org/10.1016/j.optcom.2020.126464
  • [22] Owen, M. (2007). Practical signal processing. Cambridge University Press.
  • [23] Smith, S. W. (1997). The Scientist and Engineer’s Guide to Digital Signal Processing.
  • [24] Alduchov, O. A., & Eskridge, R. E. (1996). Improved Magnus form approximation of saturation vapor pressure. Journal of Applied Meteorology and Climatology, 35(4), 601-609. https://doi.org/10.1175/1520-0450(1996)035<0601:IMFAOS>2.0.CO;2
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-448257d9-7ff5-4ed9-bcb0-9dab58540034
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.