PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Enhanced sulfidation of chrysocolla with ammonium carbamate and its effect on flotation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, flotation experiments, zeta potential, XPS, AFM, SEM-EDS, and contact angle measurements were performed to study the influence of ammonium carbamate (CH6N2O2) on the sulfidation flotation of chrysocolla. The results of the sulfidation flotation experiments showed that the recovery of chrysocolla increased more than 40% on the optimal condition after adding ammonium carbamate. In addition, the zeta potential of samples with ammonium carbamate was clearly higher than ores for pH > 6, which was due to the complexation reaction between ammonium carbamate and copper ion on the surface of chrysocolla samples. The activity of copper adsorption has also been improved. Furthermore, the XPS data indicated that the content of Cu-S compounds on the mineral surface has been significantly enhanced after ammonium carbamate complex sulfidation. The chemical analysis of the solution led to the same conclusion. The AFM results showed that ammonium carbamate had a positive impact on the adsorption of minerals surface, and increased the flotation recovery. It can be deduced from the SEM-EDS analysis that the surface of chrysocolla better combined with S-, and more Cu-S components were generated on the surface, which led to 1.04% increase of S atomic concentration. Finally, the contact angle measurements showed that the water contact angle of chrysocolla after adding ammonium carbamate could reach 90.4°, which proved that the sulfidation improved the floatability of the chrysocolla sample.
Rocznik
Strony
atr. no. 168573
Opis fizyczny
Bibliogr. 33 poz., rys., tab., wykr.
Twórcy
autor
  • State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, PR China
autor
  • State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, PR China
autor
  • State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, PR China
autor
  • State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, PR China
Bibliografia
  • ALPAN, F.F., FUERSTENAU, D.W. (1984). The flotation of chrysocolla by mercaptan, International Journal of Mineral Processing, 13 (2), 105–115.
  • BANZA, A.N., GOCK, E. (2003). Mechanochemical processing of chrysocolla with sodium sulphide. Minerals Engineering, 16 (12), 1349–1354.
  • BIDEAUX, A., NICHOLS, B. (1995). Handbook of Mineralogy, Part 1; Mineral Data Publishing: Tucson, AZ, USA.
  • BRION, D. (1980). Etude par spectroscopie de photoelectrons de la degradation superficielle de FeS2, CuFeS2, ZnS et PbS a l'air et dans l'eau. Applications of Surface Science. 5(2), 133–152.
  • CLOTILDE APUA, M., MADIBA, S. MAPILANE. (2021). Leaching kinetics and predictive models for elements extraction from copper oxide ore in sulphuric acid. Journal of the Taiwan Institute of Chemical Engineers, 121, 313–320.
  • DONG, J. S., LIU, Q. J., YU, L., SUBHONQULOV, S. H. (2021). The interaction mechanism of Fe3+ and NH4+ on chalcopyrite surface and its response to flotation separation of chalcopyrite from arsenopyrit, Sep. Purif. Technol. 256, 117778.
  • FENG, Q.C., WEN, S.M., BAI, X., CHANG, W.H., CUI, C.F., ZHAO, W.J. (2019). Surface modification of smithsonite with ammonia to enhance the formation of sulfidation products and its response to flotation, Miner. Eng. 137, 1–9.
  • FENG, Q.C., WEN, S.M., DENG, J.S., ZHAO, W.J. (2017). Combined DFT and XPS investigation of enhanced adsorption of sulfide species onto cerussite by surface modification with chloride, Appl. Surf. Sci. 425, 8–15.
  • FIRSOV, M.N., NEFEDOV, V.I., SHAPLYGIN, I.S. (1982). Electronic structures of MRhO2, MRh2O4, RhMO4 and Rh2MO6 on the basis of X-ray spectroscopy and ESCA data. Journal of Electron Spectroscopy and Related Phenomena. 26(1), 65–78.
  • FOLMER, J. C. W., JELLINEK, F. (1980). The valence of copper in sulphides and selenides: An X-ray photoelectron spectroscopy study. J. Less-Common. Met. 76, 153–162.
  • FROST, R.L., XI, Y.F. (2013). Is chrysocolla (Cu, Al)2H2Si2O5(OH)4•nH2O related to spertiniite Cu(OH)2—Avibrational spectroscopic study. Vib. Spectrosc. 64(0), 33–38.
  • GEESEY, G. G., JANG, L., JOLLEY, J. G., HANKINS, M. R., IWAOKA ,T., GRIFFITHS, P. R. (2015). Binding of Metal Ions by Extracellular Polymers of Biofilm Bacteria, Water Science & Technology. 20(11–12), 161–165.
  • GUO, R.C., LIU, S.W., LIAO, Z.H., LIU, R. (2021). The flotation modification test of chrysocolla research on RSM. Journal of Physics: Conference Series, 2097(1).
  • HABASHI, F., DUGDALE, R. (1973). Leaching studies on chrysocolla. Transactions of the American Institute of Mining, Metallurgical and Petroleum Engineers (Society of Mining Engineers), 254, 98–102.
  • HABER, J., MACHEJ, T., UNGIER, L., ZIÓŁKOWSKI, J. (1978). Esca studies of copper oxides and copper molybdates. J. Solid State Chem. 25 (3), 207–218.
  • HAN, G., WEN, S.M., WANG, H., FENG, Q.C. (2020). Selective adsorption mechanism of salicylic acid on pyrite surfaces and its application in flotation separation of chalcopyrite from pyrite, Sep. Purif. Technol. 240, 116650.
  • HAN, J. W., XIAO, J., QIN, W. Q., CHEN, D. X. AND LIU, W. (2017). Copper Recovery from Yulong Complex Copper Oxide Ore by Flotation and Magnetic Separation. JOM, 69(9), 1563–1569.
  • HOPE, G.A., BUCKLEY, A.N., PARKER, G.K., NUMPRASANTHAI, A., WOODS, R., MCLEAN, J. (2012). The interaction of n-octanohydroxamate with chrysocolla and oxide copper surfaces. Miner. Eng., 1(36–38), 2–11.
  • LEANDRO, R.D.L., IGOR, J.B.S., GUILHERME, D.R., LUIS, H.M.D.S., MARIA, C.H.D.S. (2012). Copper recovery from ore by liquid–liquid extraction using aqueous two-phase system. J Hazard Mater, 237-238, 209–214.
  • MANUELA, SALDAÑA., EDELMIRA, GÁLVEZ., ROBLES DELFINAC. ET AL. (2022). Copper Mineral Leaching Mathematical Models—A Review. Materials, 15(5), 731–742.
  • NAKAI, I., SUGITANI, Y., NAGASHIMA, K., NIWA, Y. (1978). X-ray photoelectron spectroscopic study of copper minerals. Journal of Inorganic & Nuclear Chemistry, 40 (5), 789–791.
  • PARKS, G.A., KOVACS, C. (1966). Thermal activation of chrysocolla for xanthate flotation. Trans. Soc. Min. Eng. 235, 349–354.
  • RAGHAVAN, S., ADAMEC, E., LEE, L. (1984). Sulfidization and flotation of chrysocolla and brochantite. Int. J. Miner. Process. 12, 173–191.
  • RAGHAVAN, S., FUERSTENAU, D.W. (1977). Characterization and pore structure analysis of a copper ore containing chrysocolla. Int. J. Miner. Process. 4 (4), 381–393.
  • SHEN, PEILUN., LIU, DIANWEN. (2020). Effects of ammonium phosphate on the formation of crystal copper sulfide on chrysocolla surfaces and its response to flotation, Minerals Engineering. 155, 106300.
  • TANAYDIN, MEHMET. KAYRA., TANAYDIN, ZÜMRA. BAKICI., DEMIRKIRAN, NIZAMETTIN. (2022). Optimization of process parameters and kinetic modelling for leaching of copper from oxidized copper ore in nitric acid solutions. Transactions of Nonferrous Metals Society of China, 32(4), 1301–1313.
  • TCHISTIAKOV, A.A. (2000). Colloid Chemistry of In-Situ Clay-Induced Formation Damage, Lafayette. 58747.
  • VENEZIA, A. M., BERTONCELLO, R., DEGANELLO, G. (1995). X-ray photoelectron spectroscopy investigation of pumice-supported nickel catalysts. Surface and Interface Analysis. 23(4), 239-247.
  • WANG, Z. K., CHE, J. J., YE, C. L. (2010). Application of ferric chloride both as oxidant and complexant to enhance the dissolution of metallic copper. Hydrometallurgy, 105(1/2), 69−74.
  • WU, D. D., MA, W. H., WEN S. M., BAI S. J., DENG, J. S., YIN, Q. (2017). Contribution of ammonium ions to the sulfidation flotation of smithsonite, J. Taiwan. Inst. Chem. E. 78, 20–26.
  • YU, P., DING, Z., BI, Y.X., LI, J., WEN, S.M., BAI, S.J., (2021). Surface modification of ilmenite by introducing copper-ammonia ion and its response to flotation in H2SO4-H2O2 system, Miner. Eng. 171, 107102.
  • ZHANG, M.Z., ZHU, G.C., ZHAO, Y.N., FENG, X.J. (2012). A study of recovery of copper and cobalt from copper–cobalt oxide ores by ammonium salt roasting. Hydrometallurgy, 129, 140–144.
  • ZUO, Q., YANG, J., SHI, Y.F., WU, D.D. (2020). Activating hemimorphite using a sulfidation-flotation process with sodium sulfosalicylate as the complexing agent, J. Mater. Res. Technol. 9, 10110–10120.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-44821200-0b13-48dc-b3db-b23c43b7c926
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.