PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Parameter identification of space manipulator’s flexible joint

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A manipulator mounted on a satellite is often used to perform active debris removal missions. The space manipulator control system needs to take the dynamic model of the satellite‐manipulator system into account because of the influence of the manipulator motion on the position and attitude of the satellite. Therefore, precise modeling of the space manipulator dynamics as well as parameter identification are needed to improve the credibility of the simulation tools. In this paper, we presented the identification of the flexible‐joint space manipulator model based on dynamic equations of motion. Experiments were performed in an emulated microgravity environment using planar air bearings. The arbitrarily selected joint‐space trajectory was performed by the manipulator’s control system. The experiments were repeated multiple times in order to analyze the identification method sensitivity. The identification is based on the Simulink SimMechanics model. Thus, the procedure can be used for any space manipulator without the need to obtain analytical relations for dynamic equations each time. Including joint flexibility and spring viscous damping in the dynamic model allowed it to reflect the experimental measurements better than the reference model could. Identified parameters of the flexible joint have values of the same magnitude as corresponding real system parameters.
Twórcy
  • The Space Research Centre of the Polish Academy of Sciences (CBK PAN),ul. Bartycka 18a, 00-716 Warsaw, Poland
  • The Space Research Centre of the Polish Academy of Sciences (CBK PAN),ul. Bartycka 18a, 00-716 Warsaw, Poland
  • Lodz University of Technology, Institute of Automatic Control, Poland
  • The Space Research Centre of the Polish Academy of Sciences (CBK PAN),ul. Bartycka 18a, 00-716 Warsaw, Poland
Bibliografia
  • [1] C. Bonnal, J. M. Ruault, and M. C. Desjean. “Active debris removal: Recent progress and current trends,” Acta Astronautica, vol. 50, 2013, pp. 71–96; doi: 10.1016/j.actaastro.2012.11.009.
  • [2] S. Estable, et al. “Capturing and deorbiting Envisat with an Airbus Spacetug. Results from the ESA e.deorbit Consolidation Phase study,” Journal of Space Safety Engineering, vol. 7, no. 1, 2020, pp. 52–66; doi: 10.1016/j.jsse.2020.01.003.
  • [3] P. Huang, Y. Xu, and B. Liang. “Contact and impact dynamics of space manipulator and free-flying target,” Proceedings of the 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, Edmonton, AB, Canada, 2005; doi: 10.1109/IROS.2005.1545260.
  • [4] L. Felicetti, P. Gasbarri, A. Pisculli, M. Sabatini, and G. B. Palmerini. “Design of robotic manipulators for orbit removal of spent launchers’ stages,” Acta Astronautica, vol. 119, 2016, pp. 118–130; doi: 10.1016/j.actaastro.2015.11.012.
  • [5] F. Aghili. “Optimal control of a space manipulator for detumbling of a target satellite,” Proceedings of the 2009 IEEE International Conference on Robotics and Automation, Kobe, Japan, 2009; doi: 10.1109/ROBOT.2009.5152235.
  • [6] B. Zhan, M. Jin, G. Yang, and C. Zhang. “A novel strategy for space manipulator detumbling a non-cooperative target with collision avoidance,” Advances in Space Research, vol. 66(4), 2020, pp. 785–799; doi: 10.1016/j.asr.2020.05.045.
  • [7] M. Shan, J. Guo, and E. Gill. “Review and comparison of active space debris capturing and removal,” Progress in Aerospace Sciences, vol. 80, 2016, pp. 18–32; doi: 10.1016/j.paerosci.2015.11.001.
  • [8] K. Seweryn, F. L. Basmadji, and T. Rybus. “Space robot performance during tangent capture of an uncontrolled target satellite,” The Journal of the Astronautical Sciences, vol. 69, 2022, pp. 1017–1047; doi: 10.1007/s40295-022-00330-2.
  • [9] I. Dulęba. “Impact of control representations on efficiency of local nonholonomic motion planning,” Biuletyn of the Polish Academy of Sciences Technical Sciences, vol. 59, no. 2, 2011, pp. 213–218; doi: 10.2478/v10175-011-0026-x.
  • [10] J. Ratajczak, and K. Tchoń. “Normal forms and singularities of non–holonomic robotic systems: a study of free-floating space robots,” Systems & Control Letters, vol. 138, 2020, 104661; doi: 10.1016/j.sysconle.2020.104661.
  • [11] A. Ellery. “Tutorial Review on Space Manipulators for Space Debris Mitigation,” Robotica, vol. 8, no. 2, 2019; doi: 10.3390/robotics8020034.
  • [12] K. Yoshida, and Y. Umetani. “Control of a space free-flying robot,” Proceedings of the 29𝑡ℎ IEEE Conference on Decision and Control, Honolulu, USA, 1990; doi: 10.1109/CDC.1990.203553.
  • [13] T. Rybus, K. Seweryn, and J. Z. Sa̧siadek. “Application of predictive control for manipulatormounted on a satellite,” Archives of Control Sciences, vol. 28, no. 1, 2018, pp. 105–118; doi: 10.24425/119079.
  • [14] P. Palma, K. Seweryn, and T. Rybus. “Impedance control using selected compliant prismatic joint in a free-floating space manipulator,” Aerospace, vol. 9, no. 8, 2022, p. 406; doi:10.3390/aerospace9080406.
  • [15] J. Z. Sa̧siadek. “Space robotics and its challenges,” Aerospace Robotics, Springer, 2013, pp. 1–8; doi:10.1007/978-3-642-34020-8_1.
  • [16] J. Qingxuan, Z. Xiaodong, S. Hanxu, and C. Ming. “Active control of space flexible-joint/flexible-link manipulator,” Proceedings of the 2008 IEEE Conference on Robotics, Automation and Mechatronics, Chengdu, China, 2008, pp. 812–818; doi: 10.1109/RAMECH.2008.4681344.
  • [17] S, Ulrich, J. Z. Sa̧siadek, and I. Barkana. “Modeling and direct adaptive control of a flexible-jointmanipulator,” Journal of Guidance, Control, And Dynamics, vol. 35, no. 1, 2012, pp. 25–39; doi: 10.2514/1.54083.
  • [18] X.-Y. Yu. “Augmented robust control of a free-floating flexible space robot,” Journal of Aerospace Engineering, vol. 229, no. 5, 2015, pp. 947–957; doi: 10.1177/0954410014541632.
  • [19] D. Meng, Y. She, W. Xu, W. Lu, and B. Liang. “Dynamic modeling and vibration characteristics analysis of flexible-link and flexible-joint space manipulator,” Multibody System Dynamics, vol. 43, 2018, pp. 321–347; doi: 10.1007/s11044-017-9611-6.
  • [20] X. Liu, H. Li, J. Wang, and G. Cai. “Dynamics analysis of flexible space robot with joint friction,” Aerospace Science and Technology, vol. 47, 2015, pp. 164–176; doi: 10.1016/j.ast.2015.09.030.
  • [21] Z. Chen, Y. Zhang, and Z. Li. “Hybrid Control Scheme Consisting of Adaptive and Optimal Controllers for Flexible-Base Flexible-Joint Space Manipulator with Uncertain Parameters,” Proceedings of the 2017 9th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC), Hangzhou, China, 2017; doi: 10.1109/IHMSC.2017.84.
  • [22] A. Stolfi, P. Gasbarri, and M. Sabatini. “A parametric analysis of a controlled deployable spacemanipulator for capturing a non-cooperative flexible satellite,” Acta Astronautica, vol. 148, 2018, pp. 317–326; doi: 10.1016/j.actaastro. 2018.04.028.
  • [23] C. Toglia, M. Sabatini, P. Gasbarri, and G. B. Palmerini. “Optimal target grasping of a flexible space manipulator for a class of objectives,” Acta Astronautica, vol. 68(7-8), 2011, pp. 1031–1041; doi: 10.1016/j.actaastro.2010.09.013.
  • [24] R. Masoudi, and M. Mahzoon. “Maneuvering and Vibrations Control of a Free-Floating Space Robot with Flexible Arms,” Journal of Dynamic Systems, Measurement and Control, vol. 133(5),2011, 051001; doi: 10.1115/1.4004042.
  • [25] D. Shang, X. Li, M. Yin, and F. Li. “Tracking control strategy for space flexible manipulator considering nonlinear friction torque based on adaptivefuzzy compensation sliding mode controller,”Advances in Space Research, In Press, 2020; doi:10.1016/j.asr.2022.04.042.
  • [26] K. Nanos, and E. Papadopoulos. “On the dynamics and control of flexible joint space manipulator,” Control Engineering Practice, vol. 45, 2015, pp. 230–243; doi: 10.1016/j.conengprac.2015.06.009.
  • [27] M. Wojtunik, and K. Seweryn. “The influenceof the gear reduction ratio on the free-floatingspace manipulator’s dynamics,” Proceedings of the 18𝑡ℎ International Conference on Informatics in Control, Automation and Robotics (ICINCO 2021), 2021, pp. 282–289; doi: 10.5220/0010556502820289.
  • [28] H. Wang, and Y. Xie. “Prediction error based adaptive Jacobian tracking for free-floating space manipulators,” IEEE Transactions on Aerospace and Electronic Systems, vol. 48, no.4, 2012, pp. 3207–3221; doi: 10.1109/TAES.2012.6324694.
  • [29] O. Ma, H. Dang, and K. Pham. “On-orbit identification of inertia properties of spacecraft usinga robotic arm,” Journal of Guidance, Control, and; Dynamics, vol. 31, no. 6, 2008, pp. 1761–1771; doi: 10.2514/1.35188.
  • [30] O.-O. Christidi-Loumpasefski, C. Ntinos, and E. Papadopoulos. “Analytical and experimental parameter estimation for free-floating space manipulator systems,” Proceedings of the 14𝑡ℎ Symposium on Advanced Space Technologies in Robotics and Automation (ASTRA ’17), Leiden, The Netherlands, 2017.
  • [31] O.-O. Christidi-Loumpasefski, C. Ntinos, and E. Papadopoulos. “On parameter estimation of flexible space manipulator systems,” Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 2020; doi: 10.1109/IROS45743. 2020.9340768.
  • [32] Goldstein H., Poole C., and Safko J., Classical Mechanics, Third Edition, Pearson: London, 2001.
  • [33] F. Cavenago, A. M. Giordano, and M. Massari. “Contact force observer for space robots,” Proceedings of the 58𝑡ℎ Conference on Decision and Control, Nice, France, 2019; doi: 10.1109/CDC40024.2019.9029285.
  • [34] Schaub H., and Junkins J. L., Analytical mechanics of aerospace systems, AIAA: Reston, VA, 2002.
  • [35] T. Rybus, M. Wojtunik, and F. L. Basmadji. “Optimal collision-free path planning of a free-floating space robot using spline-based trajectories,” Acta Astronautica, vol. 190, 2022, pp. 395–408; doi: 10.1016/j.actaastro.2021.10.012.
  • [36] J. Oleś, J. Kindracki, T. Rybus, Ł. Mȩżyk, P. Paszkiewicz, R. Moczydłowski, T. Barciński, K. Seweryn, and P. Wolański. “A 2D microgravity test-bed for the validation of space robot control algorithms,” Journal of Automation, Mobile Robotics & Intelligent Systems, vol. 11, no. 2, 2017, pp. 95–104; doi: 10.14313/JAMRIS_2-2017/21.
  • [37] F. L. Basmadji, G. Chmaj, T. Rybus, and K. Seweryn. “Microgravity testbed for the development of space robot control systems and the demonstration of orbital maneuvers,” Proceedings of SPIE: Photonics Applications in Astronomy, Communications, Industry and High–Energy Physics Experiments, Wilga, Poland, 2019; doi:10.1117/12.2537981.
  • [38] R. Moczydłowski. “Design of elastic element dedicated for space manipulator joint based on FEM topological optimization,” master’s thesis (in Polish: “Projekt elementu podatnego pary kinematycznej manipulatora satelitarnego bazujący na optymalizacji topologicznej z wykorzystaniem oprogramowania MES”), Warsaw University of Technology, 2017.
  • [39] Garnier H., and Wang L. Advances in industrial control: Identification of continuous- time models from sampled data, Springer, London, 2003.
  • [40] G. Wood, and D. Kennedy. “Simulating Mechanical Systems in Simulink with SimMechanics,” Technical report, The MathWorks, Inc., Natick, USA, 2003.
  • [41] J. C. Lagarias, J. A. Reeds, M. H. Wright and P. E. Wright. “Convergence properties of the Nelder-Mead simplex method in low dimensions,” SIAM Journal of Optimization, vol. 9, no. 1, 1998, pp. 112–147; doi: 10.1137/S1052623496303470.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-447f172d-a117-4f3a-bc2b-da4586c0b8be
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.