Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this study, the catalytic effect of TiO2-ZnO/GAC coupled with non-thermal plasma was investigated on the byproducts distribution of decomposition of chlorinated VOCs in gas streams. The effect of specific input energy, and initial gas composition was examined in a corona discharge reactor energized by a high frequency pulsed power supply. Detected by-products for catalytic NTP at 750 J L-1 included CO, CO2, Cl2, trichloroacetaldehyde, as well as trichlorobenzaldehyde with chloroform feeding, while they were dominated by CO, CO2, and lower abundance of trichlorobenzaldehyde and Cl2 with chlorobenzene introduction. Some of the by-products such as O2, NO, NO2, and COCl2 &enspdisappeared totally over TiO2-ZnO/GAC. Furthermore, the amount of heavy products such as trichlorobenzaldehyde decreased significantly in favor of small molecules such as CO, CO2, and Cl2 with the hybrid process. The selectivity towards COx soared up to 77% over the catalyst at 750 J L-1 and 100 ppm of chlorobenzene.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
32--40
Opis fizyczny
Bibliogr. 46 poz., rys., wykr., wz.
Twórcy
autor
- Kurdistan University of Medical Sciences, Department of Occupational Health Engineering, Faculty of Health, Sanandaj, Iran
- Hamedan University of Medical Sciences, Center of Excellence for Occupational Health, Research Center for Health Sciences, Hamedan, Iran
autor
- Hamedan University of Medical Sciences, Center of Excellence for Occupational Health, Research Center for Health Sciences, Hamedan, Iran
autor
- Hamedan University of Medical Sciences, Center of Excellence for Occupational Health, Research Center for Health Sciences, Hamedan, Iran
autor
- Bu-Ali Sina University, Department of physics, Hamedan, Iran
autor
- Iran University of Medical Sciences, Department of occupational health, Occupational health research center, School of public health, Tehran, Iran
Bibliografia
- 1. Ojala, S., Pitkäaho, S ., Laitinen, T., Niskala Koivikko, N., Brahmi, R., Gaálová, J., Matejova, L., Kucherov, A., Päivärinta, S. & Hirschmann, C. (2011). Catalysis in VOC Abatement. Top Catal. 54, 1224-1256. DOI: 10.1007/s11244-011-9747-1.
- 2. Humans, I. Internation al agency for research on cancer. (1979). IARC monographs on the evaluation of the carcinogenic risk of chemicals to humans. From http://monographs.iarc.fr/
- 3. Pitkäaho, S., Ojala, S ., Kinnunen, T., Silvonen, R. & Keiski, R.L. (2011). Catalytic Oxidation of Dichloromethane and Perchloroethylene: Laboratory and Industrial Scale Studies. Top Catal. 54, 1257-1265. DOI: 10.1007/s11244-011-9748-0.
- 4. Iijima, S., Nakamura, M., Yokoi, A., Kubota, M., Huang, L. & Matsuda, H. (2011). Decomposition of dichloromethane and in situ alkali absorption of resulting halogenated products by a packed-bed non-thermal plasma reactor. J. Mater. Cy Waste Manag. 13, 206-212. DOI: 10.1007/s10163-011-0022-0.
- 5. Pahwa, M., Demers, P. & Ge, C. (2012). Occupational exposure limits for carcinogens in Ontario workplaces: Opportunities to prevent and control exposure. From http://occupationalcancer.ca/2012/occupational-exposure-limits-for-carcinogens-in-ontarioworkplaces-opportunities-to-prevent-and-control-exposure/
- 6. Subrahmanyam, C., Renk en, A. & Kiwi-Minsker, L. (2007). Novel catalytic non-thermal plasma reactor for the abatement of VOCs. Chem. Eng. J. 134, 78-83. DOI: 10.1016/j.cej.2007.03.063.
- 7. Agnihotri, S., Cal, M. P. & Prien, J. (2004). Destruction of 1, 1, 1-trichloroethane using dielectric barrier discharge nonthermal plasma. J. Environ. Eng. 130, 349-355. DOI: 10.1061/ (ASCE)0733-9372.
- 8. Subrahmanyam, C., Magu reanu, M., Laub, D., Renken, A. & Kiwi-Minsker, L. (2007). Nonthermal plasma abatement of trichloroethylene enhanced by photocatalysis. J. Phys. Chem. C. 111, 4315-4318. DOI: 10.1021/jp066731o.
- 9. Subrahmanyam, C., Magu reanu, M., Renken, A. & Kiwi- -Minsker, L. (2006). Catalytic abatement of volatile organic compounds assisted by non-thermal plasma: Part 1. A novel dielectric barrier discharge reactor containing catalytic electrode. Appl. Catal. B. 65, 150-156. DOI: 10.1016/j.apcatb.2006.01.006.
- 10. Mo, J., Zhang, Y., Xu , Q., Lamson, J.J. & Zhao, R. (2009). Photocatalytic purification of volatile organic compounds in indoor air: A literature review. Atmos Environ. 43, 2229-2246. DOI: 10.1016/j.atmosenv.2009.01.034.
- 11. Vandenbroucke, A.M., Dinh, M.T.N., Giraudon, J.M., Morent, R., De Geyter, N., Lamonier, J.F. & Leys, C. (2011). Qualitative by-product identification of plasma-assisted TCE abatement by mass spectrometry and Fourier-transform infrared spectroscopy. Plasma Chem Plasma Proces. 31, 707-718. DOI: 10.1007/s11090-011-9310-7.
- 12. Van Durme, J., Dewulf , J., Leys, C. & Van Langenhove, H. (2008). Combining non-thermal plasma with heterogeneous catalysis in waste gas treatment: A review. Appl. Catal. B. 78, 324-333. DOI: 10.1016/j.apcatb.2007.09.035.
- 13. Chen, H.L., Lee, H.M. , Chen, S.H., Chang, M.B., Yu, S.J. & Li, S.N. (2009). Removal of volatile organic compounds by single-stage and two-stage plasma catalysis systems: a review of the performance enhancement mechanisms, current status, and suitable applications. Environ. Sci. Technol. 43, 2216-2227. DOI: 10.1021/es802679b.
- 14. Augugliaro, V., Loddo , V., Palmisano, G., Palmisano, L. & Pagliaro, M. (2010). Clean by light irradiation. RSC Pub. Royal Society of Chemistry.
- 15. Oda, T., Kuramochi, H . & Ono, R. (2008). Trichloroethylene decomposition by the nonthermal plasma Combined with manganese-dioxide supported alumina. Int. J. Plasma Environ. Sci. Technol. 2, 50-55. DOI: 10.1541/ieejfms.127.145.
- 16. Mok, Y., Lee, S.B., O h, J.H., Ra, K.S. & Sung, B.H. (2008). Abatement of trichloromethane by using nonthermal plasma reactors. Plasma Chem Plasma Proces. 28, 663-676. DOI: 10.1007/s11090-008-9151-1.
- 17. Indarto, A., Choi, J. -W., Lee, H. & Song, H.K. (2006). Treatment of CCl4 and CHCl3 emission in a gliding-arc plasma. Plasma Devices Oper. 14, 1-14. DOI: 10.1080/10519990500493833.
- 18. Hu, Y. & Yuan, C. (2 006). Low-temperature preparation of photocatalytic TiO2 thin films on polymer substrates by direct deposition from anatase sol. J. Mater. Sci. Technol. 22, 239-244. DOI: 10.1016/j.jcrysgro.2004.10.146.
- 19. Carp, O., Huisman, C. & Reller, A. (2004). Photoinduced reactivity of titanium dioxide. Progr. Sol. Stat. Chem. 32, 33-177. DOI: 10.1016/j.progsolidstchem.2004.08.001.
- 20. Liu, Y., Yang, S., Ho ng, J. & Sun, C. (2007). Lowtemperature preparation and microwave photocatalytic activity study of TiO2-mounted activated carbon. J. Haz. Mat. 142, 208-215. DOI: 10.1016/j.jhazmat.2006.08.020.
- 21. Magureanu, M., Mandac he, N., Parvulescu, V., Subrahmanyam, C., Renken, A. & Kiwi-Minsker, L. (2007). Improved performance of non-thermal plasma reactor during decomposition of trichloroethylene: Optimization of the reactor geometry and introduction of catalytic electrode. Appl. Catal. B. 74, 270-277. DOI: 10.1016/j.apcatb.2007.02.019.
- 22. Twigg, M.V. (2006). R oles of catalytic oxidation in control of vehicle exhaust emissions. Catal Today. 117, 407-418. DOI: 10.1016/j.cattod.2006.06.044.
- 23. Marotta, E., Scorrano , G. & Paradisi, C. (2005). Ionic reactions of chlorinated volatile organic compounds in air plasma at atmospheric pressure. Plasma Process Polym. 2, 209-217. DOI: 10.1002/ppap.200400047.
- 24. Francke, K.P., Miessn er, H. & Rudolph, R. (2000). Cleaning of air streams from organic pollutants by plasma-catalytic oxidation. Plasma Chem Plasma Proces. 20, 393-403. DOI: 10.1023/A:1007048428975.
- 25. Kim, H.H. & Ogata, A . (2011). Nonthermal plasma activates catalyst: from current understanding and future prospects. European Phys. J. App. Phys. 55. DOI: 10.1051/epjap/2011100444.
- 26. Karuppiah, J., Reddy, E.L., Reddy, P.M.K., Ramaraju, B. & Subrahmanyam, C. (2013). Catalytic nonthermal plasma reactor for the abatement of low concentrations of benzene. Int. J. Environ. Sci. Technol. 1-8. DOI: 10.1007/s13762-013-0218-z.
- 27. Matsumoto, S.J. (2000 ). Catalytic reduction of nitrogen oxides in automotive exhaust containing excess oxygen by NOx storage-reduction catalyst. Cattech 4, 102-109. DOI: 10.1023/A:1011951415060.
- 28. Kang, C.S., You, Y. J., Kim, K.J., Kim, T.h., Ahn, S.J., Chung, K.H., Park, N.C., Kimura, S. & Ahn, H.G. (2006). Selective catalytic reduction of NOx with propene over double wash-coat monolith catalysts. Catal Today. 111, 229-235. DOI: 10.1016/j.cattod.2005.10.031.
- 29. Shelef, M. (1995). Se lective catalytic reduction of NOx with N-free reductants. Chem. Review. 95, 209-225. DOI: 10.1021/cr00033a008.
- 30. Centi, G., Ciambelli, P., Perathoner, S. & Russo, P. (2002). Environmental catalysis: trends and outlook. Catal Today. 75, 3-15. DOI: 10.1016/S0920-5861(02)00037-8.
- 31. Roy, S., Hegde, M. & Madras, G. (2009). Catalysis for NOx abatement. Applied Energy. 86, 2283-2297. DOI: 10.1016/j. apenergy.2009.03.022.
- 32. Ozawa, Y. & Urashima , K. (2006). Recent Development Trends in Catalyst Technologies for Reducing Nitrogen Oxide Emissions. Science and Technology Trends.
- 33. Lee, W.J., Chen, C. Y., Lin, W.C., Wang, Y.T. & Chin, C.J. (1996). Phosgene formation from the decomposition of 1, 1-C2H2Cl2 contained gas in an RF plasma reactor. J. Haz. Mat. 48, 51-67. DOI: 10.1016/0304-3894(95)00145-X.
- 34. Indarto, A., Choi, J. -W., Lee, H. & Song, H.-K. (2006). Decomposition of CCl4 and CHCl3 on gliding arc plasma. J. Environ Sci. 18, 83-89. DOI: 1001-0742(2006)01-0083-07.
- 35. Főglein, K.A., Szabó, P.T., Babievskaya, I.Z. & Szépvölgyi, J. (2005). Comparative study on the decomposition of chloroform in thermal and cold plasma. Plasma Chem Plasma Proces. 25, 289-302. DOI: 10.1007/s11090-004-3041-y.
- 36. Indarto, A., Choi, J. W., Lee, H. & Song, H.K. (2008). Decomposition of greenhouse gases by plasma. Environ Chem. Letters. 6, 215-222. DOI: 10.1007/s10311-008-0160-3.
- 37. Schmidt-Szałowski, K. , Krawczyk, K., Sentek, J., Ulejczyk, B., Górska, A. & Młotek, M. (2011). Hybrid plasma-catalytic systems for converting substances of high stability, greenhouse gases and VOC. Chem. Eng. Res. Design. 89, 2643-2651. DOI: 10.1016/j.cherd.2011.06.018.
- 38. Futamura, S. & Yamam oto, T. (1997). Byproduct identification and mechanism determination in plasma chemical decomposition of trichloroethylene. IEEE T Industry Applications. 33, 447-453. DOI: 10.1109/28.568009.
- 39. Evans, D., Rosocha, L .A., Anderson, G.K., Coogan, J.J. & Kushner, M.J. (1993). Plasma remediation of trichloroethylene in silent discharge plasmas. J. Appl. Phys. 74, 5378-5386. DOI: 10.1063/1.354241.
- 40. Vandenbroucke, A., Mo rent, R., De Geyter, N. & Leys, C. (2011). Decomposition of Trichloroethylene with Plasmacatalysis: A review. J. Adv. Oxid. Technol. 14, 165-173.
- 41. Nakagawa, Y., Fujisaw a, H., Ono, R. & Oda, T. (2010). Dilute Trichloroethylene Decomposition by using High Pressure Non-Thermal Plasma: Humidity Effects. In Industry Applications Society Annual Meeting (IAS), IEEE. pp 1-4.
- 42. Kovács, T., Turányi, T. & Szépvölgyi, J. (2010). CCl4 Decomposition in RF Thermal Plasma in Inert and Oxidative Environments. Plasma Chem Plasma Proces. 30, 281-286. DOI: 10.1007/s11090-010-9219-6.
- 43. Han, S.-B. & Oda, T. (2007). Decomposition mechanism of trichloroethylene based on by-product distribution in the hybrid barrier discharge plasma process. Plasma Sour. Sci. Technol. 16, 413. DOI: 10.1088/0963-0252/16/2/026.
- 44. Sivachandiran, L., Ka ruppiah, J. & Subrahmanyam, C. (2012). DBD plasma reactor for oxidative decomposition of Chlorobenzene. Int. J. Chem. React. Eng. 10. DOI: 10.1515/1542-6580.2785.
- 45. Snyder, H.R. & Ander son, G.K. (1998). Effect of air and oxygen content on the dielectric barrier discharge decomposition of chlorobenzene. IEEE T Plasma Sci. 26, 1695-1699. DOI: 10.1109/27.747888.
- 46. Magureanu, M., Mandac he, N. & Parvulescu, V. (2007). Chlorinated organic compounds decomposition in a dielectric barrier discharge. Plasma Chem Plasma Process. 27, 679-690. DOI: 10.1007/s11090-007-9103-1.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-447c53a4-1315-4e7f-afdd-86037ff0b34c