PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Hubero : a framework to simulate human behaviour in robot research

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Social robots’ software is commonly tested in a simula‐ tion due to the safety and convenience reasons as well as an environment configuration repeatability assurance. An interaction between a robot and a human requires ta‐ king a person presence and his movement abilities into consideration. The purpose of the article is to present the HuBeRo framework, which can be used to simulate hu‐ man motion behaviour. The framework allows indepen‐ dent control of each individual’s activity, which distinguis‐ hes the presented approach from state‐of‐the‐art, open‐ source solutions from the robotics domain. The article presents the framework assumptions, architecture, and an exemplary application with respect to presented sce‐ narios.
Słowa kluczowe
Twórcy
  • Warsaw University of Technology, Institute of Control and Computation Engineering, 00–665 Warszawa, ul. Nowowiejska 15/19, www: https://www.robotyka.ia.pw.edu.pl
  • Warsaw University of Technology, Institute of Control and Computation Engineering, 00–665 Warszawa, ul. Nowowiejska 15/19, www: https://www.robotyka.ia.pw.edu.pl
  • Warsaw University of Technology, Institute of Control and Computation Engineering, 00–665 Warszawa, ul. Nowowiejska 15/19, www: https://www.robotyka.ia.pw.edu.pl
  • Warsaw University of Technology, Institute of Control and Computation Engineering, 00–665 Warszawa, ul. Nowowiejska 15/19,www: https://www.robotyka.ia.pw.edu.pl
Bibliografia
  • [1] EARL – Embodied Agent‑Based Robot Control Systems Modelling Language ‑ version 1.1 ‑ reference manual, March 2020.
  • [2] “INCARE project page at WUT”, March 2020.
  • [3] J. Andrade, P. Santana, and A. P. Almeida, “Self‑supervised learning of motion‑induced acoustic noise awareness in social robots”, Journal of Automation, Mobile Robotics and Intelligent Systems, vol. 13, no. 1, 2019, 10.14313/JAMRIS_1‑2019/1.
  • [4] W. Dudek, M. Węgierek, J. Karwowski, W. Szynkiewicz, and T. Winiarski, “Task harmonisation for a single–task robot controller”. In: K. Kozłowski, ed., 12th International Workshop on Robot Motion and Control (RoMoCo), 2019, 86–91, 10.1109/RoMoCo.2019.8787385. [5] E. Frydenlund, T. Elzie, A. Collins, and R. Robinson, “A hybridized approach to validation: The role of sociological research methods in pedestrian modeling”, Transportation Research Procedia, vol. 2, 2014, 10.1016/j.trpro.2014.09.077.
  • [6] E. T. Hall, The hidden dimension, Garden City, N.Y., Doubleday, 1966.
  • [7] D. Helbing and P. Molnar, “Social force model for pedestrian dynamics”, Physical Review E, vol. 51, no. 5, 1995, 10.1103/PhysRevE.51.4282.
  • [8] J. Kędzierski, P. Kaczmarek, M. Dziergwa, and K. Tchoń , “Design for a robotic companion”, International Journal of Humaoid Robotics, vol. 12, 2015, 1550007–1, 10.1142/S0219843615500073.
  • [9] R. Kirby, R. Simmons, and J. Forlizzi, “Companion: A constraint‑optimizing method for person acceptable navigation”. In: RO‑MAN 2009 ‑ The 18th IEEE International Symposium on Robot and Human Interactive Communication, 2009, 607–612, 10.1109/ROMAN.2009.5326271.
  • [10] W. Koh and S. Zhou, “Modeling and simulation of pedestrian behaviors in crowded places”, ACM Trans. Model. Comput. Simul., vol. 21, 2011, 20, 10.1145/1921598.1921604.
  • [11] J. Kolakowski, V. Djaja‑Josko, M. Kolakowski, and J. Cichocki, “Localization system supporting people with cognitive impairment and their caregivers”, International Journal of Electronics and Telecommunications, vol. 66, no. 1, 2020, 125–131, 10.24425/ijet.2020.131853.
  • [12] T. Kornuta, C. Zieliń ski, and T. Winiarski, “A universal architectural pattern and specification method for robot control system design”, Bulletin of the Polish Academy of Sciences: Technical Sciences, vol. 68, no. 1, 2020, 3–29, 10.24425/bpasts.2020.131827.
  • [13] D. Lu. “A path planner library and node.”. http://wiki.ros.org/global_planner. [Accessed on:2021‑06‑21].
  • [14] I. Mocanu, D. Axinte, O. Cramariuc, and B. Cramariuc, “Human activity recognition with convolution neural network using tiago robot”. In: 2018 41st International Conference on Telecommunications and Signal Processing (TSP), 2018, 1–4, 10.1109/TSP.2018.8441486.
  • [15] M. Moussaı̈d, D. Helbing, S. Garnier, A. Johansson, M. Combe, and G. Theraulaz, “Experimental study of the behavioural mechanisms underlying self‑organization in human crowds”, Proceedings of the Royal Society B, vol. 276, 2009, 2755–2762, 10.1098/rspb.2009.0405.
  • [16] X. Pan, C. S. Han, K. Dauber, and K. H. Law, “A multi‑agent based framework for the simulation of human and social behaviors during emergency evacuations”, AI & Society, vol. 22, 2007, 113–132, 10.1007/s00146‑007‑0126‑1.
  • [17] N. Piçarra, J.‑C. Giger, G. Pochwatko, and J. Mozaryn, “Designing social robots for interaction at work: Socio‑cognitive factors underlying intention to work with social robots”, Journal of Automation, Mobile Robotics and Intelligent Systems, vol. 10, no. 4, 2016, 17–26, 10.14313/JAMRIS_4‑2016/28.
  • [18] J. Piasek and K. Wieczorowska‑Tobis, “Acceptance and long‑term use of a social robot by elderly users in a domestic environment”. In: 11th International Conference on Human System Interaction (HSI), 2018, 478–482,10.1109/HSI.2018.8431348.
  • [19] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and A. Y. Ng, “ROS: an open‑source Robot Operating System”. In: ICRA Workshop on Open Source Software, 2009.
  • [20] V. S. Rajpurohit and M. Manohara Pai, “Motion prediction of moving objects in a robot navigational environment using fuzzy‑based decision tree approach”, Journal of Automation, Mobile Robotics and Intelligent Systems, vol. 4, no. 4, 2010, 11–18.
  • [21] M. Reed, J. Faraway, D. Chaffin, and B. Martin, “The humosim ergonomics framework: A new approach to digital human simulation for ergonomic analysis”, SAE Technical Papers, 2006, 10.4271/2006‑01‑2365.
  • [22] N. Schmitz, J. Hirth, and K. Berns, “A simulation framework for human‑robot interaction”. 2010,79–84, 10.1109/ACHI.2010.28.
  • [23] D. Seredyński, K. Banachowicz, and T. Winiarski, “Graph‑based potential field for the end‑effector control within the torque‑based task hierarchy”. In: 2016 21st International Conference on Methods and Models in Automation and Robotics (MMAR), 2016, 645–650, 10.1109/MMAR.2016.7575212.
  • [24] S. Sonoh, S. Aou, K. Horio, H. Tamukoh, T. Koga, and T. Yamakawa, “A human robot interaction by a model of the emotional learning in the brain”, Journal of Automation, Mobile Robotics and Intelligent Systems, vol. 4, no. 2, 2010, 48–54.
  • [25] J. van den Berg, S. Patil, J. Sewall, D. Manocha,and M. Lin, “Interactive navigation of individual agents in crowded environments”, 2008.
  • [26] T. Winiarski, W. Dudek, M. Stefań czyk, L. Zieliński, D. Giełdowski, and D. Seredyń ski, “An intent‑based approach for creating assistive robots’ control systems”, arXiv preprint arXiv:2005.12106, 2020.
  • [27] T. Winiarski, M. Węgierek, D. Seredyń ski, W. Dudek, K. Banachowicz, and C. Zieliń ski, “EARL –Embodied Agent‑Based Robot Control Systems Modelling Language”, Electronics, vol. 9, no. 2, 2020, 379, 10.3390/electronics9020379.
  • [28] W. Zhou and M. Reed, “Validation of the human motion simulation framework: Posture prediction for standing object transfer tasks”, SAE Technical Papers, 2009, 10.4271/2009‑01‑2284.
  • [29] C. Zieliń ski, T. Kornuta, and T. Winiarski, “A systematic method of designing control systems for service and field robots”. In: 19‑th IEEE International Conference on Methods and Models in Automation and Robotics, MMAR’2014, 2014, 1–14, 10.1109/MMAR.2014.6957317.
  • [30] C. Zieliń ski, M. Stefańczyk, T. Kornuta, M. Figat, W. Dudek, W. Szynkiewicz, W. Kasprzak, J. Figat, M. Szlenk, T. Winiarski, K. Banachowicz, T. Zielińska, E. G. Tsardoulias, A. L. Symeonidis, F. E. Psomopoulos, A. M. Kintsakis, P. A. Mitkas, A. Thallas, S. E. Reppou, G. T. Karagiannis, K. Panayiotou, V. Prunet, M. Serrano, J.‑P. Merlet, S. Arampatzis, A. Giokas, L. Penteridis, I. Trochidis, D. Daney, and M. Iturburu, “Variable structure robot control systems: The RAPP approach”, Robotics and Autonomous Systems, vol. 94, 2017, 226 – 244, 10.1016/j.robot.2017.05.002.
  • [31] C. Zieliń ski, T. Winiarski, and T. Kornuta, “Agent‑based structures of robot systems”. In: K. J. and et al., eds., Trends in Advanced Intelligent Control, Optimization and Automation, vol. 577, 2017, 493–502, 10.1007/978‑3‑319‑60699‑6_48.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4479b0d8-ed50-4877-8567-da1e93b14a3b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.