PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Comparative assessment of carbon dioxide emissions from internal combustion engines vehicles, plug-in hybrid electric vehicles, battery electric vehicles and fuel cell electric vehicles operated in Poland from 2025–2040 –all types of vehicles M1 category

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study presents calculations of relative carbon dioxide emissions for different types of passenger cars (internal combustion engine vehicles, plug-in hybrid electric vehicles, battery electric vehicles, and fuel cell electric vehicles). Using a model based on the life cycle assessment methodology, carbon dioxide equivalent emissions were determined for these vehicles, taking into account three scenarios of energy diversification for Poland from 2025 to 2040. Based on the research, it was concluded that the most environmentally friendly vehicles (in terms of carbon dioxide emissions) are fuel cell electric vehicles. The least environmentally friendly vehicles during operation are plug-in hybrid electric vehicles.
Czasopismo
Rocznik
Strony
45--58
Opis fizyczny
Bibliogr. 25 poz.
Twórcy
  • West Pomeranian University of Technology in Szczecin, Department of Automotive Engineering; Piastow Avenue 19, 70-310 Szczecin, Poland
  • West Pomeranian University of Technology in Szczecin, Department of Automotive Engineering; Piastow Avenue 19, 70-310 Szczecin, Poland
  • West Pomeranian University of Technology in Szczecin, Department of Automotive Engineering; Piastow Avenue 19, 70-310 Szczecin, Poland
  • West Pomeranian University of Technology in Szczecin, Department of Automotive Engineering; Piastow Avenue 19, 70-310 Szczecin, Poland
Bibliografia
  • 1. Popkiewicz, M. & Kardaś, A. & Malinowski, S. Nauka o klimacie. Warszawa: Wydawnictwo Nieoczywiste. 2018. [In Polish: Climate Science. Warsaw: Nieobvious Publishing House].
  • 2. Ecofys, World GHG Emission Flow Chart 2012. 2015.
  • 3. UNFCCC, Adoption of the Paris Agreement.
  • 4. ICCT, China’s New Energy Vehicle mandate policy (Final Rule). 2018.
  • 5. State of California, 2016 ZEV action plan. 2016.
  • 6. Government of India, Electric Cars. 2018.
  • 7. EC, Setting emission performance standards for new passenger cars and for new light commercial vehicles as part of the Union’s integrated approach to reduce CO2 emissions from light-duty vehicles and amending Regulation (EC) No 7.
  • 8. Ge, Z. & Zhijun, P. Life Cycle Asses.ment (LCA) of BEV’s environmental benefits for meeting the challenge of ICExit (Internal Combustion Engine Exit). Energy Reports. 2021. Vol. 7. P. 1203-1216.
  • 9. Bieker, G. A global comparison of the life-cycle greenhouse gas emissions of combustion engine and electric passenger cars. ICCT. Berlin. 2021. P. 1-81.
  • 10. Tang, B. & Yi, X. & Mingyang, W. Life cycle assessment of battery electric and internal combustion engine vehicles considering the impact of electricity generation mix: a case study in China. Atmosphere. 2022. Vol. 2. P. 1-23.
  • 11. Buberger, J. & Kersten, A. & Kuder, M. et al. Total CO2-equivalent life-cycle emissions from commercially available passenger cars. Renewable and Sustainable Energy Reviews. 2022. Vol. 159. P. 1-12.
  • 12. Gimbert, Y. UPDATE T&E’s analysis of electric car lifecycle CO₂ emissions. Transport & Environment. Brussels. 2022. P. 1-28.
  • 13. Hirz, M. & Nguyen, T.T. Life-cycle CO2-equivalent emissions of cars driven by conventional and electric propulsion systems. World Electr. Veh. J. 2022. Vol. 13(4). P. 1-21.
  • 14. Borkowski, A. & Zawiślak, M. Comparative analysis of the life-cycle emissions of carbon dioxide emitted by battery electric vehicles using various energy mixes and vehicles with ICE. Combustion Engines. 2023. Vol. 192. No. 1. P. 3-10.
  • 15. Finnveden, G. & Hauschild, M. & Ekvall, T. et al. Recent developments in life cycle assessment. Journal of Environmental Management. 2009. Vol. 1. P. 1-21.
  • 16. Qiao, Q. & Zhao, F. & Liu, Z. et al. Comparative study on life cycle CO2 emissions from the production of electric and conventional vehicles in China”. Energy Procedia. 2017. Vol. 105. P. 3584-3595.
  • 17. Han, H. & Qinyu, Q. & Zongwei, L. et al. Comparing the life cycle greenhouse gas emissions from vehicle production in China and the USA: implications for targeting the reduction opportunities. Clean Techn Environ Policy. 2017. Vol. 19. P. 1509-1522.
  • 18. Estaller, J. & Kersten, A. & Kuder, M. et al. Battery impedance modeling and comprehensive comparisons of state-of-the-art cylindrical 18650 battery cells considering cells’ price, impedance, specific energy and C-Rate. In: IEEE International Conference on Environment and Electrical Engineering and 2021 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe). Bari, Italy. 2021. P. 1-8.
  • 19. Schoenung, S.M. & Keller J.O. Commercial potential for renewable hydrogen in California. International Journal of Hydrogen Energy. 2017. Vol. 19. P. 13321-13328.
  • 20. Dunn, J. & Gaines, L. & Kelly, J. et al. The significance of Li-ion batteries in electric vehicle lifecycle energy and emissions and recycling’s role in its reduction. Energy and Environmental Science. 2015. Vol. 8. P. 158-168.
  • 21. Carbon intensity of electricity generation. Available at: https://ourworldindata.org/grapher/carbonintensity-electricity.
  • 22. Świercz, W. & Matuszko, M. & Moskwik, K. et al. Rynek energii w Polsce w 2024 roku. Arthur Dlittle. 2024. [In Polish: Energy market in Poland in 2024].
  • 23. Spritverbrauch und Autokosten berechnen und vergleichen. Available at: https://www.spritmonitor. de. [In German: Calculate and compare fuel consumption and car costs].
  • 24. Electric vehicles database. Available at: https://ev-database.org.
  • 25. Program „NaszEauto”. Do 40 tys. zł dopłaty do samochodu elektrycznego. Available at: https://www.gov.pl/web/nfosigw/program-naszeauto-do-40-tys-zl-doplaty-do-samochodu-elektrycznego. [In Polish: "NaszEauto" Program. Up to PLN 40,000 in subsidies for electric cars].
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4478788a-7212-4e57-a831-8b66489c3200
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.