PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The influence of nano-SiO2 emulsion on sulfate resistance of cement-based grouts

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Sulfate attack is one of the most significant durability issues for cement-based grouts, which are widely used to repair concrete structures in sulfate-rich environments. The purpose of this study was to investigate the impact of nano-SiO2 emulsion on the sulfate resistance of cement-based grouts. The durability of the mixes was evaluated on the basis of weight loss and compressive strength. X-ray diffraction (XRD) and scanning electron microscopy (SEM) of hardened grout matrix were used to analyze the hydration products and microstructure of the hardened grout matrix. The results indicate that the hydration degree of nano-SiO2-modified samples is higher than that of the control sample. The compressive strength from highest to lowest was 16 NSE, 10 NSE, NSP, and the control sample. The XRD and SEM results suggest that the deterioration of properties may be attributed to the formation and growth of ettringite (AFt) crystals, which may result in crack generation and extension and in the corrosion of gypsum, leading to exfoliation. The addition of nano-SiO2 to cement-based grouts through a preprepared emulsion, which facilitates dispersion within the cement matrix, has the potential to reduce AFt and gypsum contents, enhance microstructure density, decrease the migration channels of SO4-2, and ultimately improve the resistance to sulfate attack. This work will provide a novel route to enhance the sulfate resistance of cement-based grouts, which may be serviced in a sulfate-rich environment.
Wydawca
Rocznik
Strony
116--125
Opis fizyczny
Bibliogr. 40 poz., rys., tab.
Twórcy
autor
  • College of Architectural Science and Engineering, Yangzhou University, Yangzhou, 225127, P. R. China
autor
  • College of Architectural Science and Engineering, Yangzhou University, Yangzhou, 225127, P. R. China
autor
  • College of Architectural Science and Engineering, Yangzhou University, Yangzhou, 225127, P. R. China
autor
  • College of Architectural Science and Engineering, Yangzhou University, Yangzhou, 225127, P. R. China
autor
  • College of Architectural Science and Engineering, Yangzhou University, Yangzhou, 225127, P. R. China
autor
  • School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, P. R.China
  • College of Architectural Science and Engineering, Yangzhou University, Yangzhou, 225127, P. R. China
Bibliografia
  • [1] Yinshan X, Jianqiang Z, Sujing J. Early strength evolution of cement grouts adopted in reinforced concrete subjected to Na2SO4 corrosion. Buildings. 2023;13:579. doi: 10.3390/buildings13030579
  • [2] Zuquan J, Xia Z, Tiejun Z, Ying L, Hou B. Effect of Ca(OH)2, NaCl, and Na2SO4 on the corrosion and electrochemical behavior of rebar. Chin J Oceanol Limn. 2017;35(3):681–92. doi: 10.1007/s00343-017-5319-y
  • [3] Ortega JM, Esteban MD, Rodriguez RR, Pastor JL, Ibanco FJ, Sanchez I, Climent MA. Long-term behavior of fly ash and slag cement grouts for micropiles exposed to a sulphate aggressive medium. Materials, 2017;10:598. doi: 10.3390/ma10060598
  • [4] Liu K, Deng M, Mo L, Tang J. Deterioration mechanism of Portland cement paste subjected to sodium sulfate attack. Adv Cem Res. 2015;27(8):477–86. doi: 10.1680/jadcr.14.00051
  • [5] Mujah D. Compressive strength and chloride resistance of grout containing ground palm oil fuel ash. J Clean Prod. 2016;112:712–22. doi: 10.1016/j.jclepro.2015.07.066
  • [6] Yuyou Y, Zengdi C, Xiangqian L, Haijun D. Development and materials characteristics of fly ash-slagbased grout for use in sulfate-rich environments. Clean Technol Envir. 2016;18:949–56. doi: 10.1007/s10098-015-1040-8
  • [7] Yu Z, Yang L, Zhou S, Gong Q, Zhu H. Durability of cement-sodium silicate grouts with a high water to binder ratio in marine environments. Constr Build Mater. 2018;189:550–9. doi: 10.1016/j.conbuildmat. 2018.09.040
  • [8] Sha Fei, Fan Guoxi. Durability of a novel effective microfine cementitious grouting material in corrosion environments. Constr Build Mater. 2021;306:124842. doi: 10.1016/j.conbuildmat.2021.124842
  • [9] Sang GC, Liu JP. Study of properties of Portland and aluminate cementitious composited grouting materials. Mater Res Innov. 2010;14(3):200–5. doi: 10.1179/143307510X12719005364387
  • [10] Samanbar P, Kingsley L. Corrosion of galvanized steel in alkaline solution associated with sulfate and chloride ions. Constr Build Mater. 2023;392:131889. doi: 10.1016/j.conbuildmat.2023.131889
  • [11] Najjar MF, Nehdi ML, Soliman AM, Azabi T. Damage mechanisms of two-stage concrete exposed to chemical and physical sulfate attack. Constr Build Mater. 2017;137:141–52. doi: 10.1016/j.conbuildmat.2017.01. 112
  • [12] Yuguo Y, Zhang YX. Numerical modelling of mechanical deterioration of cement mortar under external sulfate attack. Constr Build Mater. 2018;158:490–502. doi: 10.1016/j.conbuildmat.2017.10.048
  • [13] Hime WG, Mather B. “Sulfate attack,” or is it?. Cem Concr Res. 1999;29(5):789–91. doi: 10.1016/S0008-8846(99)00068-X
  • [14] Nguyen VH, Colina H, Torrenti JM, Boulay C, Nedjar B. Chemo-mechanical coupling behaviour of leached concrete: Part I: Experimental results. Nucl Eng Des. 2007;237(20–21):2083–9. doi: 10.1016/j.nucengdes.2007.02.013
  • [15] Kurumisawa K, Haga K, Hayashi D, Owada H. Effects of calcium leaching on diffusion properties of hardened and altered cement pastes. Phys Chem Earth. Parts A/B/C. 2017;99:175–83. doi: 10.1016/j.pce.2017. 03.007
  • [16] Alharbi YR, Abadel AA, Mayhoub OA, Kohail M. Effect of using available metakaoline and nano materials on the behavior of reactive powder concrete. Constr Build Mater. 2021;269:121344. doi: 10.1016/j.conbuildmat.2020.121344
  • [17] Abadel Aref A, Alghamdi H, Alharbi YR, Alamri M, Khawaji M, et al.. Investigation of alkali-activated slag-based composite incorporating dehydrated cement powder and red mud. Materials, 2023;16:1551. doi: 10.3390/ma16041551
  • [18] Gamal Heba A, El-Feky MS, Alharbi YR, Abadel AA, Kohail M.. Enhancement of concrete durability with hybrid nano materials. Sustainability. 2021;13:1373. doi: 10.3390/su13031373
  • [19] Cheng Y, Wei A, Scrivener K. Mechanism of expansion of mortars immersed in sodium sulfate solutions. Cem Concr Res. 2013;43:105–11. doi: 10.1016/j.cemconres. 2012.10.001
  • [20] Cheng Y, Wei S, Scrivener K. Application of image analysis based on SEM and chemical mapping on PC mortar under sulfate attack. J Wuhan Univ Technol (Mater Sci Ed). 2014;29(3):534–9. doi: 10.1007/s11595-014-0 953-0
  • [21] Pastor JL, Ortega JM, Climent MA, Sanchez I. Skin friction coefficient change on cement grouts for micropiles due to sulfate attack. Constr Build Mater. 2018;163:80–6. doi: 10.1016/j.conbuildmat.2017.12.091
  • [22] Permeh S, Lau K, Tansel B. Moisture and ion mobilization and stratification in post-tensioned (PT) grout during hydration. Case Stud Constr Mater 2021;15:e00644. doi: 10.1016/j.cscm.2021.e00644.
  • [23] Ortega Álvarez JM, Esteban Pérez MD, Rodrídguez Escribano RR, Pastor Navarro JL. Microstructural effects of sulphate attack in sustainable grouts for micropiles. Materials. 2016;9:905. doi: 10.3390/ma9110905
  • [24] Rusati PK, Song KI. Magnesium chloride and sulfate attacks on gravel-sand-cement-inorganic binder mixture. Constr Build Mater. 2018;187:565–71. doi: 10.1016/j.conbuildmat.2018.07.149
  • [25] Ortega Alvarez JM, Esteban MD, Rodríguez RR Pastor JL, Ibanco FJ, et al. Influence of silica fume addition in the long-term performance of sustainable cement grouts for micropiles exposed to a sulphate aggressive medium. Materials. 2017;10:890. doi: 10.3390/ma10080890
  • [26] Chindaprasirt P, Sriopas B, Phosri P, Yoddumrong P, Anantakam K, Kroehong W. Hybrid high calcium fly ash alkali-activated repair material for concrete exposed to sulfate environment. J Build Eng. 2022;45:103590. doi: 10.1016/j.jobe.2021.103590
  • [27] LI S, Chao W, Li W, Cheng J, Yuan B. Study on the effect of nanosilica suspension on the properties of cement-based grouts. Mater Sci Pol. 2022;40(4):171–82. doi: 10.2478/msp-2022-0054
  • [28] Kaiwei L, Daosheng S, Aiguo W, et al. Mechanical strength and microstructure of grouting materials with long-term immersion in sodium sulfate solution. Chin J Mater Sci Eng. 2018;36(3):403–8. doi: 10.14136/j.cnki.issn1673-2812.2018.03.011
  • [29] Diab AM, Elyamany HE, Elmoaty-Abd Elmoaty MAbd, Sreh MM. Effect of nanomaterials additives on performance of concrete resistance against magnesium sulfate and acids. Constr Build Mater. 2019;210:210–31. doi: 10.1016/j.conbuildmat.2019.03.099
  • [30] ossein S, Taherinezhad AF. Chloride ion permeability improvement of recycled aggregate concrete using pretreated recycled aggregates by silica fume slurry. Constr Build Mater. 2021;270:121498. doi: 10.1016/j.conbuildmat.2020.121498
  • [31] Sun J, Shi Z, Dai J, Song X, Hou G. Early hydration properties of Portland cement with labsynthetic calcined stöber nano-SiO2 particles as modifier. Cem Concr Compos. 2022;132:104622. doi: 10. 1016/j.cemconcomp.2022.104622
  • [32] Silva YF, Delvasto S. Sulfate attack resistance of self-compacting concrete with residue of masonry. Constr Build Mater. 2021, 268: 121095. doi: 10.1016/j.conbuildmat.2020.121095
  • [33] Ma Huizhu, Deng Min, Zhu Jianqiang. Ettringite recrystallization in concrete. Mater Rep. 2007;21:353–5. doi. 10.3321/j.issn:1005-023X.2007.z1.107
  • [34] Baoguo M, Xiaojian G, Zhongtao L. Effects of mineral admixtures on thaumasite form of sulfate attack of cement mortars. Chin J Mater Sci Eng. 2006;24(2):230–4. doi: 10.3969/j.issn.1673-2812.2006.02.016
  • [35] Cefis N, Comi C. Chemo-mechanical modelling of the external sulfate attack in concrete. Cem Concr Res. 2017;93:57–70. doi: 10.1016/j.cemconres.2016.12.003
  • [36] Feng P, Chang H, Liu X, Ye S, Shu X, Ran Q. The significance of dispersion of nano-SiO2 on early hydration of cement pastes [J]. Mater Des. 2020;186:108320. doi: 10.1016/j.matdes.2019.108320
  • [37] Liu H, Li Q, Ni S, Wang L, Guo Y. Effect of nano-silica dispersed at different temperatures on the properties of cement-based materials. J Build Eng. 2022;46:103750. doi: 10.1016/j.jobe.2021.103750
  • [38] Sargam Y, Wang K, Tsyrenova A, Liu F, Jiang S. Effects of anionic and nonionic surfactants on the dispersion and stability of nanoSiO2 in aqueous and cement pore solutions [J]. Cem Concr Res. 2021;144:106417. doi: 10.1016/j.cemconres.2021.106417
  • [39] Lavergne F, Belhadi R, Carriat J, Fraj AB. Effect of nano-silica particles on the hydration, the rheology and the strength development of a blended cement paste [J]. Cem Concr Compos. 2019;95:42–55. doi: 10.1016/j.cemconcomp.2018.10.007
  • [40] Rupasinghe M, San Nicolas R, Mendis P, Sofi M. Investigation of strength and hydration characteristics in nano-silica incorporated cement paste [J]. Cem Concr Compos. 2017;80:17–30. doi: 10.1016/j.cemconcomp.2017.02.011
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-44786f13-5b68-466f-8d60-cabdb4e1d253
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.