Maciej KONOPACKI, Grzegorz STORY, Marian KORDAS, Rafał RAKOCZY

e-mail: rrakoczy@zut.edu.pl

Wydział Technologii i Inżynierii Chemicznej, Zachodniopomorski Uniwersytet Technologiczny, Szczecin

Przebieg reakcji neutralizacji w obecności wirującego pola magnetycznego

Wstęp

Procesem neutralizacji (zobojętniania) określa się reakcję między kwasem i zasadą w wyniku której tworzy się sól i woda. Proces ten ma na celu zmianę wartości *pH* poprzez dodanie odpowiedniego czynnika chemicznego.

Reakcje neutralizacji znajdują zastosowanie w analizie miareczkowej. Stanowią one jedną z chemicznych metod analizy ilościowej oraz w technologii oczyszczania ścieków powstających w wyniku działalności zakładów przemysłowych [*Sakai i in., 1996; Gitari i in., 2008; Hawkes i in., 2013*]. Reakcja ta jest również wykorzystywana w różnych procesach chemicznych lub biologicznych [*Elmahdi i in., 2003; Buurma i Haq, 2007*].

Z technicznego punktu widzenia proces neutralizacji prowadzi się w różnego typu neutralizatorach w reżimie ciągłym [*Adams i in., 2007; Nam i in., 2013*]. W literaturze przedmiotu porusza się przede wszystkim zagadnienia zawiązane z doborem optymalnych warunków prowadzenia procesu neutralizacji, np. ustaleniem odpowiedniego czasu reakcji zobojętniania [*Yan i in., 1999*]. Szczególnej analizie i dyskusji poddawane są zagadnienia związane z doborem odpowiednich wielkości strumieni masowych lub parametrów procesowych dla instalacji w skali laboratoryjnej, ułamkowo technicznej lub technicznej w której realizuje się proces neutralizacji [*Galán i in., 2004; Barraud i in., 2009*].

Nieliczną grupę stanowią prace tematycznie związane z zagadnieniami dotyczącymi zastosowania nowych rozwiązań konstrukcyjnych neutralizatorów [*Watten i in., 2007*]. Szczególnie interesująca jest możliwość intensyfikowania procesu neutralizacji polem magnetycznym [*Hausmann i in., 2000*].

Głównym celem prezentowanej pracy jest analiza doświadczalna wpływu wirującego pola magnetycznego na proces neutralizacji. Zdecydowano się przeanalizować wpływ tego rodzaju pola na reakcje zobojętniania typu słaby kwas – mocna zasada prowadzoną w reżimie okresowym. W tym celu wprowadzono określoną objętość 0,1 M roztworu kwasu octowego do 0,1 M roztworu zasady sodowej w obecności wirującego pola magnetycznego. Wykonano również serie pomiarowe mające na celu przebadanie wpływu obecności cząstek ferromagnetycznych aktywowanych wirującym polem magnetycznym na realizację procesu neutralizacji.

Część doświadczalna

Opis aparatury badawczej

Wirujące pole magnetyczne (WPM) w reaktorze generowano przez trójfazowy stojan indukcyjnego silnika klatkowego o parametrach zgodnych z polską normą PN-63/E-08107. Zasilanie uzwojenia stojana stanowił trójfazowy prąd zmienny o częstotliwości w zakresie 1÷50 Hz oraz napięciu 150 V. Do regulacji częstotliwości wirującego pola magnetycznego wykorzystano przemiennik częstotliwości (falownik). Zdecydowano się przeanalizować wpływ WPM na proces neutralizacji dla trzech wybranych wartości częstotliwości (10, 30 i 50 Hz).

Generowane WPM może być określone poprzez uzyskiwane wartości indukcji magnetycznej [*Rakoczy i Masiuk*, 2011]

$$B = 10,39f^* + 23,14 \tag{1}$$

gdzie f^* oznacza znormalizowaną wartość częstotliwości WPM $(f^* = f(f_{max})^{-1}; f_{max} = 50 \text{ Hz}).$

Na rys. 1 przedstawiono schemat stanowiska badawczego stosowanego w pracach eksperymentalnych opisanych w niniejszej pracy.

Rys. 1. Schemat stanowiska badawczego: 1 – płaszcz, 2 – uzwojenie, 3 – zlewka, 4 – elektroda pH, 5 – termometr, 6 – dozownik, 7 – przemiennik częstotliwości, 8 – komputer, 9 – przyrząd wielofunkcyjny CX-701

Opis sposobu wykonywania pomiarów

Analizę wpływu WPM na reakcję neutralizacji oparto na pomiarach doświadczalnych polegających na wprowadzeniu słabego kwasu (0,1 M CH₃COOH) do mocnej zasady (0,1 M NaOH). Określoną objętość kwasu octowego (100 ml) umieszczano w generatorze WPM. Następnie wprowadzono zasadę do badanej próbki pozostającej w obecności pola magnetycznego (objętość zasady wynosiła – 100 ml). Czas dozowania zasady wynosił 7 s.

Proces mieszania w analizowanym przypadku był realizowany poprzez zastosowanie WPM. Mechanizm procesu mieszania w obecności tego typu pola został szczegółowo omówiony i opisany w pracy [*Rakoczy i Masiuk, 2011*].

Pomiar prowadzono stosując wizualne oraz instrumentalne metody wyznaczania punktu końcowego. Do roztworu kwasu octowego dodano kilka kropel fenoloftaleiny w celu uzyskania wyraźnej zmiany barwy roztworu w wyniku zmiany środowiska kwaśnego na środowisko zasadowe. Miareczkowanie prowadzono również w obecności elektrody wskaźnikowej (elektrody *pH*) w celu określenia zmian fizykochemicznych analizowanych roztworów. W pracach doświadczalnych stosowano przyrząd wielofunkcyjny CX-701 oraz odpowiednio skalibrowane elektrody *pH*. Pomiar zmian *pH* prowadzono w dwóch skrajnych punktach znajdujących się w objętości badanych roztworów (lokalizacja punktów została pokazana na rys. 1).

W ramach badań zdecydowano się również przeanalizować wpływ obecności cząstek posiadających właściwości magnetyczne na wybraną reakcję neutralizacji. W wyniku przeprowadzonych badań oddziaływania WPM na cząstki ciała stałego o różnych właściwościach magnetycznych zaobserwowano, że wykazują one ruchy, to jest wirują wokół swoich osi, formują wirujące łańcuchy, wykonują ruchy oscylacyjne oraz przemieszczają się w objętości roboczej. Wszystkie wymienione typy ruchów wykonują cząstki ciała stałego wykonane z magnetytu.

Pod działaniem WPM cząstki magnetytu ulegają namagnesowaniu oraz zawieszeniu w fazie ciekłej. Mogą one działać jak małe, dynamiczne mieszadełka, poprawiające znacznie warunki hydrodynamiczne oraz wytworzony w ten sposób dynamiczny układ dyspersyjny można z powodzeniem zastosować do intensyfikacji wybranych procesów i opera-

str. 341

cji inżynierii chemicznej, np. reakcji neutralizacji. W prezentowanych badaniach zastosowano cząstki o rozkładzie szczegółowo opisanym w pracy [*Rakoczy i Masiuk, 2011*].

Przykładowe uśrednione wyniki zmian wartości *pH* (z dwóch czujników) od czasu trwania procesu dla różnych wartości częstotliwości WPM oraz różnej masy magnetytu zostały przedstawione na rys. 2.

Rys. 2. Przykładowe krzywe uzyskane z badań eksperymentalnych

Analiza i dyskusja wyników

W miarę dodawania wodorotlenku sodowego następuję zobojętnianie roztworu oraz powstaje mieszanina buforowa złożona ze słabego kwasu i sprzężonej z nim zasady anionowej – jonu octanowego. W momencie osiągnięcia punktu równoważnikowego (PR), punktu w którym oznaczany składnik przereagował ilościowo z titrantem, w roztworze jest obecna jedynie słaba zasada sprzężona z CH₃COOH. Jej dysocjacja decyduje o zasadowym odczynie roztworu. Po przekroczeniu PR *pH* roztworu jest zależne wyłącznie od nadmiaru dodanego NaOH.

W tab. 1 zestawiono punkty charakterystyczne procesu zobojętniania słabego kwasu (CH₃COOH) mocną zasadą (NaOH) [*Kocjan, 2000*].

Tab. 1. Ze	stawienie punl	któw charaktery	ystycznych proc	cesu zobojętniania
100	ml słabego ky	wasu (CH ₃ COC) DH) mocną zasa	dą (NaOH)

Etap	Ilość ml dodanego NaOH	Skład roztworu	рН
0	0,0	CH₃COOH słaby kwas	2,90
I	10,0÷99,9	CH ₃ COOH CH ₃ COONa mieszanina buforowa	3,80÷7,70
II (PR)	100,0	zasada anionowa CH3COONa sól słabego kwasu i mocnej zasady	8,70
Ш	100,1÷101,0	NaOH, ,0 CH ₃ COOH nadmiar mocnej zasady_	

W oparciu o informacje zestawione w tab. 1, zdecydowano się przeanalizować uzyskane krzywe pomiarowe. W tym celu otrzymane rezultaty opisano za pomocą następującej zależności analitycznej

$$(pH)_r = p_1 + \frac{p_2 - p_1}{1 + (p_3 t)^{p_4}}$$
(2)

gdzie:

 $p_1 \div p_4$ – parametry;

t - czas.

Równanie (2) przekształcono do następującej postaci umożliwiającej wyznaczenie czasu w którym osiągany jest punkt równoważnikowy

$$t \equiv t_{PR} \Rightarrow t_{PR} = \sqrt[p_4]{\left(\frac{p_2 - p_1}{(pH)_r - p_1} - 1\right)(p_3)^{-p_4}}$$
(3)

gdzie wielkość $(pH)_r = 8,7$ zgodnie z informacjami podanymi w tab. 1.

Na rys. 3 przedstawiono zależność uzyskanych, znormalizowanych czasów osiągnięcia PR od znormalizowanej częstotliwości WPM. Wartości znormalizowanych parametrów wyznaczono z następujących relacji:

$$f^* = f(f_{\text{max}})^{-1} \Rightarrow f^* = f(50)^{-1}$$
 (4a)

$$t_{PR}^* = t_{PR} [(t_{PR})_{f=0}]^{-1} \Rightarrow t_{PR}^* = t_{PR} [23,05]^{-1}$$
(4b)

Rys. 3. Wpływ znormalizowanej wartości częstotliwości WPM na znormalizowane wartości czasu osiągnięcia punktu równoważnikowego (PR) dla różnych mas cząstek magnetytu $(x^* = x (x_{max})^{-1}; x_{max} = 4 \text{ g})$

Zależności analityczne przedstawione na rys. 3 (linie ciągłe) zostały zestawione w tab. 2.

Tab. 2. Zestawienie punktów charakterystycznych procesu zobojętniania słabego kwasu (CH₃COOH) mocną zasadą (NaOH)

Masa magnetytu	Zależność analityczna		σ	$\delta_{\%}$
$0 g(x^* = 0)$	$t_{PR}^{*} = exp\{-[0,63 exp(1,69x^{*})]f^{*}\}$	0,97	0,18	-0,91%
$2 g (x^* = 0,5)$		0,99	0,22	0,16%
$4 g (x^* = 1)$		0,98	0,34	-0,44%

Przedstawione rezultaty wskazują na silny wpływ WPM na uzyskiwane czasy, w których osiągany jest PR analizowanych roztworów. Dodatkowym czynnikiem potęgującym wpływ WPM na analizowany parametr jest obecność cząstek magnetytu. Obecność materiału o właściwościach magnetycznych znacząco wpływa na obniżenie czasu, po którym osiągana jest wartość *pH* roztworu równa 8,7. Zastosowanie cząstek magnetytu znacząco zmienia warunki hydrodynamiczne oraz korzystnie wpływa na realizację procesu neutralizacji.

Uzyskane rezultaty zdecydowano się opracować w formie zależności bezwymiarowej wiążącej czas z warunkami hydrodynamicznymi. Uzyskane wyniki dotyczące operacji mieszania wyrażane są zazwyczaj za pomocą następującego równania:

$$\Theta = f(Re) \tag{5}$$

 Θ – bezwymiarowy czas mieszania;

Re – liczba Reynoldsa.

gdzie:

Bezwymiarowy czas mieszania można wyrazić jako:

$$\Theta = \frac{l_0^2}{\tau_0 \nu_0} \Rightarrow \Theta = \frac{D^2}{t_{PR} \nu_r}$$
(6)

gdzie: D -średnica zlewki (d = 0,08 m);

 v_r – lepkość roztworu (v_r = 9,98 · 10⁻⁷ m² s⁻¹).

Liczbę *Reynoldsa* zdecydowano się zdefiniować oddzielnie dla układu bez cząstek magnetytu w postaci [*Rakoczy*, 2011]:

$$Re_p = \frac{w_p l_0}{v_0} \Rightarrow Re_p = \frac{BD^2}{v_r} \sqrt{\frac{\sigma_r \omega_{WPM}}{\rho_r}}$$
 (7a)

i dla układu z cząstkami magnetytu [Rakoczy, 2013]:

$$Re_c = \frac{\Omega_c d^2}{\nu_r} \tag{7b}$$

Rys. 4. Charakterystyka czasu mieszania w funkcji liczby Reynoldsa, uzyskane dla układu bez cząstek ciała stałego wykazującego właściwości magnetyczne

Rys. 5. Charakterystyki czasu mieszania w funkcji liczby *Reynoldsa*, uzyskane dla układów z cząstkami ciała stałego wykazującego właściwości magnetyczne

gdzie:

 σ_r – przewodność elektryczna roztworu

 $(\sigma_r = 0,433 \text{ A}^2 \cdot \text{s}^3 \cdot \text{kg}^{-1} \cdot \text{m}^{-3});$

- ρ_r gęstość roztworu ($\rho_r = 1004 \text{ kg} \cdot \text{m}^{-3}$);
- ω_{WPM} prędkość wirującego pola magnetycznego, [rad·s⁻¹] (ω_{WPM} = 2 πf_{WPM});
 - Ω_c prędkość kątowa cząstek ciała stałego, [rad·s⁻¹] ($\Omega_c = 0,0002\div 0,4687 \text{ rad·s}^{-1}$);
 - d średnia średnica cząstek, m (d = 0,0009÷0,0016 m).

Na rys. 4 i 5 przedstawiono wpływ wytarzanych warunków hydrodynamicznych na uzyskiwane bezwymiarowe czasy mieszania.

W rezultacie przeprowadzonych badań wykazano, że wartości bezwymiarowego czasu mieszania ulegają znacznemu zmniejszeniu w obecności dyspersyjnej fazy stałej o właściwościach magnetycznych. Mniejsze wartości bezwymiarowego czasu mieszania świadczą o polepszeniu warunków hydrodynamicznych. Występująca burzliwość, wzrastająca wraz z natężeniem pola magnetycznego bezpośrednio związanym z częstotliwością wirowania pola, jest intensyfikowana dodatkowo elementami fazy stałej poruszającymi się w całej objętości roboczej.

Wnioski

Zaprezentowane rezultaty badań eksperymentalnych dotyczące analizy doświadczalnej wpływu wirującego pola magnetycznego na proces neutralizacji prowadzą do następujących stwierdzeń:

 Wirujące pole magnetyczne wpływa na czas osiągnięcia punktu równoważnikowego dla analizowanej reakcji (słaby kwas – mocna zasada), określonego jako punkt przegięcia na uzyskanych krzywych (przykładowe krzywe przedstawiono na rys. 2).

- Obecność cząstek ciała stałego wykazującego właściwości magnetyczne znacząco wpływa na czas osiągnięcia stechiometrycznego przereagowania badanych substancji.
- 3. Uzyskane wyniki opracowane w formie charakterystyk procesowych uwzględniają zależność bezwymiarowego czasu mieszania od wytwarzanych pod działaniem wirującego pola magnetycznego warunków hydrodynamicznych. Obliczone wartości bezwymiarowego czasu mieszania ulegają znacznemu zmniejszeniu w obecności dyspersyjnej fazy stałej o właściwościach magnetycznych.

LITERATURA

- Adams J.F., Papangelakis V.G., 2007. Optimum reactor configuration for prevention of gypsum scaling during continuous sulphuric acid neutralization. *Hydrometallurgy*, **89** 269–278. DOI: 10.1016/j.hydromet.2007.07.016
- Barraud J., Creff Y., Petit N., 2009. pH control of a fed batch reactor with precipitation. J. Proc. Cont., 19, 888-895. DOI: 10.1016/j.jprocont.2008.11.012
- Buurma N.J., Haq I., 2007. Advances in the analysis of isothermal titration calorimetry data for ligand–DNA interactions. *Methods* 42 162-172. DOI: 10.1016/j.ymeth.2007.01.010
- Elmahdi I., Baganz F., Dixon K., Harrop T., Sugden D., Lyea G.J., 2003. pH control in microwell fermentations of S. erythraea CA340: influence on biomass growth kinetics and erythromycin biosynthesis. *Biochem. Eng. J.*, 16, 299–310. DOI: 10.1016/S1369-703X(03)00073-1
- Galán O., Romagnoli J.A., Palazoglu A., 2004. Real-time implementation of multi-linear model-based control strategies—an application to a bench-scale *pH* neutralization reactor. *J. Proc. Cont.*, **14**, 571-579. DOI: 10.1016/j.jprocont.2003.10.003
- Gitari W.M., Petrik L.F., Etchebers O., Key D.L., Okujeni C., 2008. Utilization of fly ash for treatment of coal mines wastewater: Solubility controls on major inorganic contaminants. *Fuel* 87, 2450-2462. DOI: 10.1016/j.fuel.2008.03.018
- Hausmann R., Hoffmann C., Franzreb M., Höll W.H., 2000. Mass transfer rates in a liquid magnetically stabilized fluidized bed of magnetic ion-exchange particles. *Chem. Eng. Sci.*, **55**, 1477-1482. DOI: 10.1016/S0009-2509(99) 00423-6
- Hawkes J.A., Gledhill M., Connelly D.P., Achterberg E.P., 2013. Characterisation of iron binding ligands in seawater by reverse titration. *Analytica Chimica Acta*, 766, 53-60. DOI: 10.1016/j.aca.2012.12.048
- Kocjan R., 2000. Chemia analityczna. Wyd. Lekarskie, Warszawa. (ISBN 8320024331)
- Nam S.W., Jo B.I., Kim M.K., Kim W.K., Zoh K.D., 2013. Streaming current titration for coagulation of high turbidity water. *Colloids and Surfaces A: Physicochemical and Engineering Aspects*, **419**, 133-139. DOI: 10.1016/j. colsurfa.2012.11.051
- Rakoczy R., Masiuk S., 2011. Studies of a mixing process induced by a transverse rotating magnetic field. *Chem. Eng. Sci.*, 66, 2298-2308. DOI: 10.1016/j. ces.2011.02.021
- Rakoczy R., 2011. Analiza teoretyczno-doświadczalna wpływu wirującego pola magnetycznego na wybrane operacje i procesy inżynierii chemicznej. Wyd. ZUP, Szczecin (ISBN 978-83-7663-074-8)
- Rakoczy R., 2013. Mixing energy investigations in a liquid vessel that is mixed by using a rotating magnetic field. *Chem. Eng. Proc.: Process Intensification*, 66, 1-11. DOI: 10.1016/j.cep.2013.01.012
- Sakai H., Fujiwara T., Kumamaru T., 1996. Determination of inorganic anions in water samples by ion-exchange chromatography with chemiluminescence detection based on the neutralization reaction of nitric acid and potassium hydroxide. *Analytica Chimica Acta*, **331**, 239–244. DOI: 10.1016/0003-2670(96)00225-5
- Watten B.J., Lee P.C., Sibrell P.L, Timmons M.B., 2007. Effect of temperature, hydraulic residence time and elevated PCO2 on acid neutralization within a pulsed limestone bed reactor. *Water Research*, **41**, 1207-1214. DOI: 10.1016/j.watres.2006.12.010
- Yan J., Moreno L., Neretnieks I., 1999. The neutralization behavior of MSWI bottom ash on different time scales and in different reaction systems. *Waste Management*, **19**, 339–347. DOI: 10.1016/S0956-053X(99)00140-3

Badania były finansowane z grantu Ministerstwa Nauki i Szkolnictwa Wyższego w ramach projektu Inventus Plus nr 0448/IP2/2011/71.