PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

BoneCreo: a novel approach for generating a geometric model of the bone structure

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Bones, the fundamental part of the skeleton, are constantly subjected to many biological processes including growth, feeding and remodelling. Remodelling causes changes in bone structure that may be difficult to notice on a day-to-day basis but become significant over the longer time span. It acts on the cancellous and cortical bone tissue, causing alterations in thickness and spatial arrangement in the first and alternations in pore size in the second. In healthy individuals such changes are a part of the natural bone remodelling process explained by Wolff’s law. However, the direction of such changes is difficult to predict in patients in various pathological states in which bone health is affected. Here, we present a method to generate a computer based geometric model of the bone structure based on the cancellous tissue structure images. As a result we obtained a geometric model of the structure corresponding to the physical model of the cancellous bone. Such a model can be used in computer simulation to predict the remodelling changes in the healthy and pathological bone structures.
Rocznik
Strony
3--12
Opis fizyczny
Bibliogr. 28 poz., rys., tab., wykr.
Twórcy
autor
  • Institute of Biomedical Engineering and Instrumentation, Wrocław University of Technology, Wrocław, Poland
Bibliografia
  • [1] AARON J.E., MAKINS N.B., SAGREIYA K., The Microanatomy of Trabecular Bone Loss in Normal Aging Men and Women, Clin. Orthop. Relat. Res., 1987, Vol. 215, 260–271.
  • [2] AMBROSI D., ATESHIAN G.A., ARRUDA E.M., COWIN S.C., DUMAIS J., GORIELY A., HOLZAPFEL G.A., HUMPHREY J.D., KEMKEMER R., KUHL E., OLBERDING J.E., TABER L.A., GARIKIPATI K., Perspectives on biological growth and remodeling, J. Mech. Phys. Solids, 2011, Vol. 59(4), 863–883.
  • [3] BĘDZIŃSKI R., ŚCIGAŁA K., Biomechanical basis of tissue – implant interactions, Computer Methods in Mechanics CMM; Series: Advanced Structured Materials, 2009, Vol. 1, 379–390.
  • [4] BOUTROY S., VAN RIETBERGEN B., SORNAY-RENDU E., MUNOZ F., BOUXSEIN M., DELMAS P., Finite Element Analyses Based on In Vivo HR-pQCT Images of the Distal Radius is Associated with Wrist Fracture in Postmenopausal Women, J. Bone Min. Res., 2008, Vol. 23, 392–399.
  • [5] WANG C., ZHANG C., WU H., DONG X., Bone Adaptation Model Combined Micro-Modeling and Remodeling Processes, Bioinformatics and Biomedical Engineering, 2011, Vol. 1–4. DOI: 10.1109/icbbe.2011.5780457.
  • [6] CIACH-ŻELAZKO A., TOKARCZYK R., Korekcja obrazów cyfrowych dla optymalizacji ich automatycznego pomiaru, Archiwum Fotogrametrii, Kartografii i Teledetekcji, 2004, Vol. 14, 1–13.
  • [7] FERNANDES P.R., FOLGADO J., JACOBS C., PELLEGRINI V., A contact model with in growth control for bone remodelling around cement less stems, J. Biomech., 2002, Vol. 35(2), 167–76.
  • [8] GAGNÉ P., MEUNIER J., STE-MARIE L.-G., Automated bone histomorphometry using mathematical morphology, Engineering in Medicine and Biology Society, Proceedings of the 15th Annual International Conference of the IEEE, 1993, 499–500. DOI: 10.1109/IEMBS.1993.978657.
  • [9] GARCÍA J.M., DOBLARÉ M., CEGOÑINO J., Bone remodeling simulation: a tool for implant design, Comput. Mater. Sci., 2002, Vol. 25, 100–114.
  • [10] GOLDSTEIN S.A., The mechanical properties of trabecular bone: dependence on anatomic location and function. J. Biomech., 1987, Vol. 20(11–12), 1055–1061.
  • [11] GONZALES R.C., WOODS R.E., Digital image processing using Matlab, Third edition, Prentice Hall, 2007.
  • [12] JANG I.G., KIM I.Y., Computational simulation of simultaneous cortical and trabecular bone change in human proximal femur during bone remodeling, J. Biomech., 2010, Vol. 43, 294–301
  • [13] JĘDRUSIK-PAWŁOWSKA M., KROMKA-SZYDEK M., KATRA M., NIEDZIELSKA I., Mandibular reconstruction – biomechanical strength analysis (FEM) based on a retrospective clinical analysis of selected patients, Acta Bioeng. Biomech., 2013, Vol. 2(15), 23–31.
  • [14] LEKSZYCKI T., Wybrane zagadnienia modelowania w biomechanice kości, Instytut Podstawowych Problemów Techniki Polskiej Akademii Nauk, 2007.
  • [15] MALINA W., ABLAMEYKO S., PAWLAK., Podstawy cyfrowego przetwarzania obrazów, Akademicka Oficyna Wydawnicza EXIT, 2002.
  • [16] MULVIHILL B.M., PRENDERGAST P.J., Mechanobiological regulation of the remodelling cycle in trabecular bone and possible biomechanical pathways for osteoporosis, Clin. Biomech., 2010, Vol. 25(5), 491–498.
  • [17] NIKODEM A., Correlations between structural and mechanical properties of human trabecular femur bone, Acta Bioeng. Biomech., 2012, Vol. 2(14), 37–46.
  • [18] ODGAARD A., Three-dimensional methods for quantification of cancellous bone architecture, Bone, 1997, Vol. 20, 315–328.
  • [19] OTSU N., A threshold selection method from gray-level histograms, IEEE Trans. SMC, 1979, Vol. 1, 62–66.
  • [20] POCHRZĄST M., BASIAGA M., MARCINIAK J., KACZMAREK M., Biomechanical analysis of limited-contact plate used for osteosyntesis, Acta Bioeng. Biomech., 2014, Vol. 1(16), 99–105.
  • [21] ŚCIGAŁA K., Simulation of cancellous formation and remodeling, Division of Biomechanical Engineering and Experimental Mechanics, 2007, 1.
  • [22] TSUBOTA K., ADACHI T., TOMITA Y., Functional adaptation of cancellous bone in human proximal femur predicted by trabecular surface remodeling simulation toward uniform stress state, J. Biomech., 2002, Vol. 35, 1541–1551.
  • [23] TSUBOTA K., SUZUKI Y., YAMADA T., HOJO M., MAKINOUCHI A., ADACHI T., Computer simulation of trabecular remodeling in human proximal femur using lerge-scale voxel FE models: Approach to understanding Wolff’s law, J. Biomech., 2009, Vol. 42, 1088–1094.
  • [24] WAKAMATSU E., SISSONS H.A., The Cancellous bone of the Iliac Crest, Calcif Tissue (Research) Int., 1969, Vol. 4, 147–161.
  • [25] WEI LI, LIN D., QING LI, SWAIN M., Monitoring Natural Frequency for Osseointegration and Bone Remodeling Induced by Dental Implants, International Conference on Computational Intelligence for Measurement Systems and Applications, 2009, 223–225. DOI: 10.1109/CIMSA.2009.5069953.
  • [26] VOKES M.S., CARPENTER A.E., Using Cell Profiler for Automatic Identification and Measurement of Biological Objects in Images, Curr. Protoc. Mol. Biol., 2008. DOI: 10.1002/0471142727.mb1417s82.
  • [27] WRONA A., Wpływ czynników biologicznych na proces przebudowy tkanki kostnej gąbczaste, Dokonania Naukowe doktorantów. T.1, Nauki przyrodnicze, 2013, 50–57.
  • [28] WRONA A., Komputerowy Algorytm badania procesu przebudowy tkanki kostnej gąbczaste, Acta Bio.-Opt. Inform. Med., 2014, 20, 1–10.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-446da8c4-6ae1-46ad-bef2-44b4303ecd4e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.