PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Tunable dielectric and conductivity properties of two 4-n alkoxy benzoic acid

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We have presented dielectric and conductivity studies of two liquid crystal (LC) compounds- p-octyloxybenzoic acid (8OBA) and p-decyloxybenzoic acid (10OBA). Dielectric permittivity study of those compounds gives the evidence of space charge polarization and ionic conductance in the samples. Dielectric permittivity is found to be the highest for 8OBA than 10OBA. Both compounds found to exhibit positive dielectric anisotropy. Splay elastic constant as a function of temperature has also been investigated. Frequency and temperature dependent electrical conductivity of these two LC compounds have been studied in detail. Activation energy has been estimated from both dc and ac conduction process.
Rocznik
Strony
35--43
Opis fizyczny
Bibliogr. 29 poz., il., rys., wykr.
Twórcy
autor
  • Department of Physics, National Institute of Technology Agartala, Jirania, West Tripura 799 046, India
autor
  • Department of Physics, National Institute of Technology Agartala, Jirania, West Tripura 799 046, India
Bibliografia
  • [1] S.H. Lee, S.S. Bhattacharyya, H.S. Jin, K.U. Jeong, Devices and materials for high- performance mobile. Liquid crystal display, J. Mater. Chem. 22 (2012) 11893–11903.
  • [2] A.M. Shatalova, H. Kresse, G.A. Shandryuk, G.N. Bondarenko, S.A. Kuptsov, R.V. Talroze, The role of the alien proton acceptor on the formation of LC structure in H-bonded monomeric and polymeric derivatives of alkoxybenzoic acids, J. Mol. Struct. 708 (2004) 7–14.
  • [3] M.C. Paleos, D. Tsiourvas, Supramolecular hydrogen-bonded liquid crystals, Liq. Cryst. 28 (2001) 1127–1161.
  • [4] R.I. Nessim, M.I. Nessim, Effect of intermolecular hydrogen-bonding and terminal substituents on the mesophase behaviour of binary mixtures of dissimilarly-substituted benzoic acids, Thermochim. Acta 511 (2010) 27–31.
  • [5] P. Subhapriya, V.N. Vijayakumar, P.S. Vijayanand, M.L.N. Madhu Mohan, Study and characterization of double hydrogen-bonded liquidcrystalscomprising p-n alkoxy benzoic acids with azelaic and dodecane dicarboxlic acids, Mol. Cryst. Liq. Cryst. 537 (2011) 36–50.
  • [6] P. Subhapriya, P.S. Vijayanand, M.L.N. Madhu Mohan, Synthesis and characterization of cupramolecular hydrogen-bonded liquid crystals comprising of p-n-alkyloxy benzoic acids with suberic acid and pimelic acid, Mol. Cryst. Liq. Cryst. 571 (2013) 40–56.
  • [7] Q.X. Chen, K.K. Song, L. Qui, X.D. Liu, H. Huang, H.Y. Guo, Inhibitory effects on mushroom tyrosinase by p-alkoxybenzoic acids, Food Chem. 91 (2005) 269–274.
  • [8] T.J. Scheffer, in: A.R. Kmetz, F.K. Von Willisen (Eds.), Article in Book Nonemissive Electro-Optical Displays, Plenum publishing corporation, N.Y, 1976, pp. 45–78.
  • [9] A.K. Garg, V.K. Agarwal, B. Bahadur, The dielectric and optical properties oftechnologically important mixture, Mol. Cryst. Liq. Cryst. 130 (1985) 1–24.
  • [10] R. Verma, A. Tripathi, R. Dhar, Enhancement in the thermal stability of the mesophases of 4-n-(decyloxy) benzoic acid due to Li ion beam irradiaton, J. Mol. Liq. 177 (2013) 409–415.
  • [11] R. Dhar, M.B. Pandey, V.K. Agarwal, Twistwed grain boundary phases in the binary mixtures of 3β-chloro-5-cholestene and 4-n-decyloxybenzoic acid, Phase Trans. 76 (2003) 763–780.
  • [12] E.I. Efremova, Z.A. Kydryashova, L.A. Nosikova, A.P. Kovshik, L.A. Dobrun, A.B. Melnikov, Phase diagram and dielectric studies in hydrogen-bonded liquid crystal system, Mol. Cryst. Liq. Cryst. 626 (2016) 12–20.
  • [13] H. Keller, R. Hatz, Handbook of Liquid Crystals, Verlag Chemie, Weinheim, Deerfield, 1980.
  • [14] H. Naito, Y. Yokoyama, S. Murakami, M. Imai, M. Okuda, A. Sugimura, Dielectric properties of nematic liquid crystals in low frequency regime, Mol. Cryst. Liq. Cryst. 262 (1995) 249–255.
  • [15] S.L. Srivastava, R. Dhar, Characteristic time of ionic conductance and electrode polarization capacitance in some organic liquids by low frequency dielectric spectroscopy, Indian J. Pure Appl. Phys. 29 (1991) 745–751.
  • [16] R. Dhar, M. Gupta, V.K. Agrawal, M.K. Singh, Dielectric anisotropy and relaxation studies of the homologous series of N-(4-n-alkyloxy-2-hydroxybenzylidene)-4-carbethoxyaniline, Phase Trans. 81 (2008) 341–359.
  • [17] C.G. Koops, On the dispersion of resistivity and dielectric constant of some semiconductors at audio frequencies, Phys. Rev. 83 (1951) 121–124.
  • [18] M.B. Pandey, R. Dhar, V.K. Agrawal, R.P. Khare, R. Dabrowski, Low frequency dielectric spectroscopy of two room temperature chiral liquid crystal mixtures, Phase Trans. 76 (2003) 945–958.
  • [19] D. Demus, J. Goodby, G.W. Gray, Handbook of Liquid Crystals, Wiley-VCH, Weinheim, New York, Chichester, Brisbane, Singapore, Toronto, 1998.
  • [20] S. Singh, Liquid Crystals: Fundamentals, World Scientific Publishing Co. Pte. Ltd, 2002.
  • [21] P.J. Collings, Lquid Crystals Nature’s Delicate Phase of Matter, Princeton University Press, U.S.A, 2007.
  • [22] B. Kundu, S.K. Pal, S. Kumar, R. Pratibha, N.V. Madhusudana, Splay and bend elastic constants in the nematic phase of some disulfide bridged dimeric compounds, Phys. Rev. E 82 (2010) 1–9.
  • [23] D. Sinha, D. Goswami, P.K. Mandal, L. Szczucinski, R. Dabrowski, On the nature of molecular associations static permittivity and dielectric relaxation in a uniaxial nematic liquid crystal, Mol. Cryst. Liq. Cryst. 562 (2012) 156–165.
  • [24] N. Yadava, S. Kumar, R. Dhar, Cadmium selenide quantum dots to ameliorate the properties of a room temperature discotic liquid crystalline material, RSC. Adv. 5 (2015) 78823–78832.
  • [25] S.L. Srivastava, R. Dhar, Dielectric anisotropy and ac conductivity of bicomponent mixtures of liquid crystals cholesteryl pelargonate and nonyloxybenzoic acid, Mol. Cryst. Liq. Cryst. 317 (1998) 23–36.
  • [26] A.K. Jonscher, The ‘universal’ dielectric response, Nature 267 (1977) 673–679.
  • [27] P. Maass, J. Petersen, A. Bunde, W. Dieterich, H.E. Roman, Non-debye relaxation in structurally disordered ionic conductors: effect of coulomb interaction, Phys. Rev. Lett. 66 (1991) 52.
  • [28] A.N. Papathanassiou, I. Sakellis, J. Grammatikakis, Universal frequency-dependent ac conductivity of conducting polymer networks, Appl. Phys. Lett. 91 (2007) 122911.
  • [29] R.J. Klein, S. Zhang, S. Dou, B.H. Jones, R.H. Colby, J. Runta, Modeling electrode polarization in dielectric spectroscopy: ion mobility and mobile ion concentration of single-ion polymer electrolytes, J. Chem. Phys. 124 (2006) 144903.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-446d32b5-8b22-4666-8e12-df2015b94135
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.