PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of thermal radiation and chemical reaction on MHD flow of blood in stretching permeable vessel

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper focuses on the theoretical analysis of blood flow in the presence of thermal radiation and chemical reaction under the influence of time dependent magnetic field intensity. Unsteady non linear partial differential equations of blood flow consider time dependent stretching velocity, the energy equation also accounts time dependent temperature of vessel wall and the concentration equation includes the time dependent blood concentration. The governing non linear partial differential equations of motion, energy and concentration are converted into ordinary differential equations using similarity transformations solved numerically by applying ode45. The effect of physical parameters, viz., the permeability parameter, unsteadiness parameter, Prandtl number, Hartmann number, thermal radiation parameter, chemical reaction parameter and Schmidt number on flow variables, viz., velocity of blood flow in vessel, temperature and concentration of blood, has been analyzed and discussed graphically. From the simulation study the following important results are obtained: velocity of blood flow increases with the increment of both permeability and unsteadiness parameter. The temperature of blood increases at the vessel wall as the Prandtl number and Hartmann number increase. Concentration of blood decreases as time dependent chemical reaction parameter and Schmidt number increases.
Rocznik
Strony
198--211
Opis fizyczny
Bibliogr. 21 poz., wykr.
Twórcy
autor
  • WolaitaSodo University, College of Natural and Computational Science Department of Mathematics P.O. Box 138, ETHIOPIA
Bibliografia
  • [1] Prakash J. and Makinde O.D. (2011): Radiative heat transfer to blood flow through a stenotic artery in the presence of magnetic field. Lat. Am. Appl. Res., vol.41, pp.273-277.
  • [2] He Y., Shirazaki M., Liu H., Himeno R. and Sun Z. (2006): A numerical coupling model to analyze the blood flow, temperature, and oxygen transport in human breast tumor under laser irradiation. Comp. Biol. Med., vol.36, pp.1336-1350.
  • [3] Ogulu A. and Bestman A.R. (1994): Blood flow in a curved pipe with radiative heat transfer. Acta Physica Hungarica, vol.74, pp.189-201.
  • [4] Misra J.C., Sinha A. and Shit G.C. (2010): Flow of a biomagnetic viscoelastic fluid: application to estimation of blood flow in arteries during electromagnetic hyperthermia, a therapeutic procedure for cancer treatment. Appl. Math. Mech. Eng. Educ., vol.31, pp.1405-1420.
  • [5] Thomas Hernandez et al. Alligator (1983): Metabolism studies on chemical reactions in vivo. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, vol.74, No.1, pp.1-175.
  • [6] Zhiliang Xu, Nan Chen, Shawn C. Shadden, Jerrold E. Marsden, Malgorzata M. Kamocka, Elliot D. Rosen and Mark Alber (2009): Study of blood flow impact on growth of thrombi using a multiscale model. Soft Matter, vol.5, No.4, pp.769-779.
  • [7] Madhu Sharma and Gaur R.K. (2017): Effect of variable viscosity on chemically reacting magneto-blood flow with heat and mass transfer. Global Journal of Pure and Applied Mathematics, vol.13, No.3, pp.26-35.
  • [8] Vankan W.J., Huyghe J.M., Drost M.R., Janssen J.D. and Huson A. (1997): A finite element mixture model for hierarchical porous media. Int. J. Numer. Math. Eng., vol.40, pp.197-210.
  • [9] Dash R.K., Mehta K.N. and Jayaraman G. (1996): Casson fluid flow in a pipe filled with homogeneous porous medium.– Int. J. Eng. Sci.,vol.34, pp.1146-1156.
  • [10] Preziosi L. and Farina A. (2002): On Darcy’s law for growing porous media. Int. J. Non-linear Mech., vol.37, pp.485-491.
  • [11] Pal B., Misra J.C. and Gupta A.S. (1996): Steady hydromagnetic flow in a slowly varying channel. Proc. Natl. Inst. Sci. Ind. Part A,vol.66, pp.247-262.
  • [12] Misra J.C. and Shit G.C. (2009): Biomagnetic viscoelastic fluid flow over a stretching sheet. Appl. Math. Comput., vol.210, pp.350-361.
  • [13] Misra J.C., Shit G.C. and Rath H.J. (2008): Flow and heat transfer of a MHD viscoelastic fluid in a channel with stretching walls: some applications to hemodynamics. Comput. Fluids, vol.37, pp.1-11.
  • [14] Raptis A. (1998): Radiation and free convection flow through a porous medium. Int. Commun. Heat Mass,vol.25, pp.289-295.
  • [15] Misra J.C. and Sinha A. (2013): Effect of thermal radiation on MHD flow of blood and heat transfer in a permeable capillary in stretching motion. Heat Mass Transfer, vol.49, pp.617-628.DOI 10.1007/s00231-012-1107-6.
  • [16] Misra J.C., Sinha A. and Shit G.C. (2011): A numerical model for magnetohydrodynamic flow of blood in a porous channel. J. Mech. Biol.,vol.11, pp.547-562.
  • [17] Sinha A. and Misra J.C. (2012): Numerical study of flow and heat transfer during oscillatory blood flow in diseased arteries in presence of magnetic fields. Appl. Math. Mech. Engl. Educ., vol.33, pp.649-662.
  • [18] Zigta B. and Koya P.R. (2017): The effect of MHD on free convection with periodic temperature and concentration in the presence of thermal radiation and chemical reaction. International Journal of Applied Mechanics and Engineering, vol.22, No.4, pp.1059-1073.DOI: 10.1515/ijame-2017-0068.
  • [19] Zigta B. (2018): The effect of thermal radiation, chemical reaction and viscous dissipation on MHD flow. International Journal of Applied Mechanics and Engineering, vol.23, No.3, pp.787-801. DOI: 10.2478/ijame-2018-0043.
  • [20] Zigta B. (2019): Thermal radiation, chemical reaction, viscous and joule dissipation effects on MHD flow embedded in a porous medium. International Journal of Applied Mechanics and Engineering, vol.24, No.3, pp.725-737. DOI: 10.2478/ijame-2019-0045.
  • [21] Zigta B. (2020): Mixed convection on MHD flow with thermal radiation, chemical reaction and viscous dissipation embedded in a porous medium. International Journal of Applied Mechanics and Engineering, vol.25, No.1, pp.219-235. DOI: 10.2478/ijame-2020-0014.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-446cb5c0-ab90-4f54-8755-84ffcb3a5e90
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.