PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The effect of pulsed laser radiation on a thermoviscoelastic semi-infinite solid under two-temperature theory

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The purpose of this paper is to study the thermoviscoelastic interactions in a homogeneous, isotropic semi-infinite solid under two-temperature theory with heat source. The Kelvin-Voigt model of linear viscoelasticity which describes the viscoelastic nature of the material is used. The bounding plane surface of the medium is subjected to a non-Gaussian laser pulse. The generalized thermoelasticity theory with dual phase lags model is used to solve this problem. Laplace transform technique is used to obtain the general solution for a suitable set of boundary conditions. Some comparisons have been shown in figures to estimate the effects of the phase lags, viscosity, temperature discrepancy, laser-pulse and the laser intensity parameters on all the studied fields. A comparison was also made with the results obtained in the case of one temperature thermoelasticity theory.
Rocznik
Strony
77--99
Opis fizyczny
Bibliogr. 26 poz., rys., wz.
Twórcy
autor
  • Department of Mathematics, Faculty of Science, Zagazig University, P.O. Box 44519 Zagazig, Egypt
  • Department of Mathematics, Faculty of Science, Taif University, 888, Taif, Saudi Arabia
  • Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
  • Department of Mathematics, College of Science and Arts, University of Aljouf, El-Qurayat, Saudi Arabia
Bibliografia
  • [1] BIOT M.A.: Thermoelasticity and irreversible thermodynamics. J. Appl. Phys. 27(1956), 3, 240–253.
  • [2] LORD H.W., SULMAN Y.: A generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solids 15(1967), 5, 299–307.
  • [3] GREEN A.E., LINDASY K.A.: Thermoelasticity. J. Elast. 2(1972), 1, 1–7.
  • [4] TZOU D.Y.: A unified field theory for heat conduction from macro- to micro- scale. ASME J. Heat Trans. 117(1995), 1, 8–16.
  • [5] CHEN P.J., GURTIN M.E.: On a theory of heat conduction involving two temperatures. Z. Angew. Math. Phys. 19(1968), 4, 614–627.
  • [6] CHEN P.J., GURTIN M.E., WILLIAMS W.O.: On the thermodynamics of non-simple elastic materials with two temperatures. Z. Angew. Math. Phys. 20(1969), 1, 107–112.
  • [7] CHEN P.J., GURTIN M.E., WILLIAMS W.O.: A note on non simple heat conduction. Z. Angew. Math. Phys. 19(1968), 6, 960–970.
  • [8] BOLEY B.A., TOLINS I.S.: Transient coupled thermoelastic boundary value problems in the half space. ASME J. Appl. Mech. 29(1962), 4, 637–646.
  • [9] WARREN W.E., CHEN P.J.: Wave propagation in the two temperature theory of thermoelasticity. Acta Mech. 16(1973), 1-2, 21–33.
  • [10] YOUSEFF H.M.: The dependence of the modulus of elasticity and the thermal conductivity on the reference temperature in generalized thermoelasticity for an infinite material with a spherical cavity. J. Appl. Math. Mech. 26(2005), 4, 470–475.
  • [11] WOOD R.F., WHITE C.W., YOUNG R.T.: Pulsed laser processing of semi- conductors. In: Semiconductors and Semimetals, Vol. 23, Chapt. 5, Academic Press, London 1984.
  • [12] TRAJKOWSKI D., CUKIC R.: A coupled problem of thermoelastic vibrations of a circular plate with exact boundary conditions. Mech. Res. Commun. 26(1999), 2, 217–224.
  • [13] WANG X., XU X.: Thermoelastic wave induced by pulsed laser heating. Appl. Phys. A, 73(2001), 1, 107–114.
  • [14] McDONALD F.A.: On the precursor in laser-generated ultrasound waveforms in metals. Appl. Phys. Lett. 56(1990), 3, 230–232.
  • [15] ALLAM M.N.M., ABOULREGAL A.E.: The thermoelastic waves induced by pulsed laser and varying heat of non-homogeneous microscale beam resonators. J. Therm. Stresses 37(2014), 4, 455–470.
  • [16] OTHMAN M.I.A., TANTAWI R.S., ERAKI E.E.M.: Effect of rotation on a semiconducting medium with two-temperature under L-S theory. Arch. Thermodyn. 38(2017), 2, 101–122.
  • [17] ABD-ALLA A.N., ABO-DAHAB S.M.: On the reflection of the generalized magnetothermo-viscoelastic plane waves. Chaos Soliton Fract. 16(2003), 2, 211–231.
  • [18] ABD-ALLA A.N., ABO-DAHAB S.M.: The influence of the viscosity and the magnetic field on reflection and transmission of waves at interface between magnetoviscoelastic materials. Meccanica 43(2008), 5, 437–448.
  • [19] MUKHOPADHYAY S.: Effects of thermal relaxations on thermoviscoelasticity interactions in an unbounded body with a spherical cavity subjected to a periodic loading on the boundary. J. Therm. Stresses 23(2000), 7, 675-684.
  • [20] MUKHOPADHYAY B., BERA R.K.: Effect of distributed instantaneous and continuous heat sources in an infinite conducting magneto-thermo-viscoelastic solid with thermal relaxation. Comput. Math. Appl. 18(1989), 8, 723–728.
  • [21] EZAT M.A., OTHMAN M.I.A., EL-KARAMANY A.S.: State-space approach to two dimensional generalized thermoviscoelasticity with two relaxation times. Int. J. Eng. Sci. 40(2002), 11, 1251–1274.
  • [22] OTHMAN M.I.A., SONG Y.Q.: Effect of rotation on plane waves of the generalized electromagneto-thermo-viscoelasticity with two relaxation times. Appl. Math. Model. 32(2008), 5, 811–825.
  • [23] OTHMAN M.I.A., FEKRY M.: Effect of magnetic field on generalized thermoviscoelastic diffusion medium with voids. Int. J. Str. Stab. Dyn. 16(2016), 7 1550033-1–1550033-21.
  • [24] TZOU D.Y.: Macro- to microscale heat transfer: the lagging behavior. Series in chemical and mechanical engineering, Taylor & Francis, Washington 1997.
  • [25] SUN Y., FANG D., SAKA M., SOH A.K.: Laser-induced vibrations of micro-beams under different boundary conditions. Int. J. Solids Struct. 45(2008), 7-8, 1993–2013.
  • [26] HONIG G., HIRDES U.: A method for the numerical inversion of the Laplace transform. J. Comput. Appl. Math. 10(1984), 1, 113–132.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-446b697d-18ad-4934-b4c3-5bced2e7fa64
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.