Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper presents a mathematical model of a vapour vacuum system, which is a crucial component of steam power plants of critical importance for energy efficiency. This system consists of three stages, with each stage containing a steam ejector and a gas phase separator in the form of an interstage heat exchanger. The primary purpose of this system is to remove inert gases and maintain the appropriate level of vacuum in the power plant condenser. The presented mathematical model can be used to analyse the operation of the vacuum system in a steady state. Preliminary pressure calculations in various components of the vacuum system show the influence of additional measurement orifice resistance on the vacuum drop in the condenser, which can reduce the efficiency of the entire energy system. It is worth noting that the presented model can be used as a tool for analysing elements of the vacuum system in energy systems.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
31--38
Opis fizyczny
Bibliogr. 11 poz., rys.
Twórcy
autor
- Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14, Gdańsk 80-231, Poland
Bibliografia
- [1] Paliwoda, A. (1971). Jet Refrigeration Devices. WNT, Warsaw (in Polish).
- [2] Shakor, A., & Szafran, R. (1996). Digital Model of the TurboUnit Vacuum System. Energetyka, 8 (in Polish).
- [3] Goliński, J.A., & Troskolański, A.T. (1979). Ejectors: Theory and Design. WNT, Warsaw (in Polish).
- [4] de Souza, G.F.M. (2012). Thermal Power Plant Performance Analysis. Springer.
- [5] Bloch, H.P., & Singh, M.P. (2009). Steam Turbines: Design, Applications, and Rerating (2nd ed.). New York.
- [6] Drożyński, Z. (2018). Steam condensation analysis in a power plant condenser. Archives of Thermodynamics, 39(4), 3–32. doi:10.1515/aoter-2018-0027
- [7] Laskowski, R., Smyk, A., Ruciński, A., & Szymczyk, J. (2021). Determining steam condensation pressure in a power plant condenser in off-design conditions. Archives of Thermodynamics, 42(3), 45–62. doi: 10.24425/ather.2020.138109
- [8] Strušnik, D., Marčič, M., Golob, M., Hribernik, A., Živić, M., & Avsec, J. (2016). Energy efficiency analysis of steam ejector and electric vacuum pump for a turbine condenser air extraction system based on supervised machine learning modelling. Applied Energy, 173, 386–405. doi: 10.1016/j.apenergy.2016.04.047
- [9] Jahangiri, A., Aliabadi, M.A.F., Pourranjbar, D., Mottahedi, H. R., Gharebaei, H., & Ghamati, E. (2023). A comprehensive investigation of non-condensable gas and condenser temperature effects on power plant ejector performance by considering condensation flow regime. Thermal Science and Engineering Progress, 45, 102–128. doi: 10.1016/j.tsep.2023.102128
- [10] Yuto, T., Shuichiro, M., Takashi, H., & Michitsugu, M. (2015). Application of steam injector to improved safety of light water reactors. Progress in Nuclear Energy, 78, 80–100. doi: 10.1016/j.pnucene.2014.07.045
- [11] Weixiong, C., Guozhu, Z., Bingxin, L., Ming, L., & Jiping, L. (2017). Simulation study on 660MW coal-fired power plant coupled with a steam ejector to ensure NOx reduction ability. Applied Thermal Engineering, 111, 550–561. doi: 10.1016/j.applthermaleng.2016.09.104
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-446aecae-a394-4330-9239-d7266c200d1c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.