Identyfikatory
Warianty tytułu
Mapowanie śladu środowiskowego urbanizacji w dystrykcie Tirany poprzez analizę zmian wskaźnika NDVI (2000–2025)
Języki publikacji
Abstrakty
Rapid urbanization has significantly transformed the landscape of Tirana County over the past three decades, reducing natural vegetation and altering land cover composition. This study employs multi-temporal Landsat imagery and the Google Earth Engine platform to quantify vegetation change between 2000 and 2025 through the Normalized Difference Vegetation Index (NDVI) analysis. Summer season composites were generated for both years to minimize phenological effects, and NDVI differencing was used to identify areas of significant greenness loss. Additional analysis of the Normalized Difference Built-up Index (NDBI) allowed the distinction between vegetation decline caused by urban expansion and other land degradation processes. Results indicate a marked decrease in vegetated areas within the Tirana metropolitan region, primarily in the western and southern zones, where built-up surfaces have expanded. In contrast, higher-elevation zones toward Dajti Mountain retained stable vegetation cover. The findings demonstrate the value of cloud-based remote-sensing tools for long-term environmental monitoring and provide evidence of the spatial footprint of urban growth in Albania’s fastest-developing county.
W ciągu ostatnich trzydziestu lat szybka urbanizacja znacząco zmieniła krajobraz dystryktu Tirany, prowadząc do zmniejszenia naturalnej pokrywy roślinnej oraz przekształcenia wzoru pokrycia terenu. Niniejszy artykuł wykorzystuje wieloczasowe zobrazowania Landsat oraz platformę Google Earth Engine do stworzenia ilościowego opisu zmian wegetacji w latach 2000–2025, posługując się analizą znormalizowanego wskaźnika różnic wegetacji (NDVI). Aby zminimalizować wpływ pór roku, dla obu lat generowano składniki właściwe dla sezonu letniego. Do identyfikacji obszarów o znaczącej utracie zieleni zastosowano różnicowanie NDVI. Dodatkowa analiza, przeprowadzona przy użyciu znormalizowanego różnicowego wskaźnika zabudowy (NDBI) pozwoliła na rozróżnienie pomiędzy zmniejszeniem się pokrywy roślinnej spowodowanym rozrostem przestrzeni miejskiej a tym wywołanym innymi procesami degradacji terenu. Wyniki wykazują na znaczący spadek powierzchni pokrytych wegetacją w rejonie metropolitalnym Tirany, szczególnie w zachodnich i południowych częściach, gdzie nastąpiło rozszerzenie zabudowy. Obszary położone wyżej, w kierunku góry Dajti, zachowały stabilną pokrywę wegetacji. Wyniki te potwierdzają wartość narzędzi do teledetekcji opartych na chmurze punktów w długoterminowym monitoringu środowiska oraz dostarczają dowodów na istnienie śladu przestrzennego spowodowanego przez urbanizację w najszybciej rozwijającym się dystrykcie Albanii.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
61--69
Opis fizyczny
Bibliogr. 30 poz., rys.
Twórcy
autor
- Universiteti i Shkodrës “Luigj Gurakuqi”, Department of Geography, Albania
autor
- Universiteti i Shkodrës “Luigj Gurakuqi”, Department of Geography, Albania
Bibliografia
- 1. Rouse, J.W., Haas, R.H., Schell, J.A., Deering, D.W. Monitoring vegetation systems in the Great Plains with ERTS, NASA Special Publication 351, Remote Sensing Center, Texas A&M University, College Station, TX, 1974; pp. 309–317.
- 2. Zha, Y., Gao, J., Ni, S. Use of normalized difference built-up index in automatically mapping urban areas from TM imagery, Int. J. Remote Sens., 2003; volume 24(3), pp. 583–594. (https://doi.org/10.1080/01431160304987).
- 3. Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone, Remote Sens. Environ., 2017; volume 202, pp. 18–27. (https://doi.org/10.1016/j.rse.2017.06.031).
- 4. U.S. Geological Survey, Landsat Collection 2 Surface Reflectance, U.S. Department of the Interior, 2022. (https://www.usgs.gov/landsat-missions/landsat-collection-2-surface-reflectance).
- 5. U.S. Geological Survey, Landsat Collection 2, U.S. Department of the Interior, 2021. (https://www.usgs.gov/landsat-missions/landsat-collection-2).
- 6. U.S. Geological Survey, Landsat 8–9 Collection 2 Level 2 Science Product Guide, U.S. Department of the Interior, 2024. (https://www.usgs.gov/media/files/landsat-8-9-collection-2-level2-science-product-guide).
- 7. European Space Agency, Sentinel-2 user handbook, ESA Standard Document, 2015. (https://sentinels.copernicus.eu/documents/247904/685211/Sentinel-2_User_Handbook).
- 8. European Union/ESA/Copernicus, Harmonized Sentinel-2 MSI: MultiSpectral Instrument, Level-2A (SR), Google Earth Engine Data Catalog, 2017. (https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2_SR_HARMONIZED).
- 9. Google Earth Engine, Earth Engine Data Catalog, 2025. (https://developers.google.com/earth-engine/datasets/catalog).
- 10. European Space Agency, WorldCover product user manual (Version 2.0), 2022. (https://esa-worldcover.s3.eu-central-1.amazonaws.com/v200/2021/docs/WorldCover_PUM_V2.0.pdf).
- 11. European Space Agency, ESA WorldCover 2021: Global land cover product at 10 m resolution based on Sentinel-1 and Sentinel-2 data, 2021. (https://worldcover2021.esa.int/).
- 12. ESA WorldCover Consortium, ESA WorldCover 10m v200 [Dataset], Google Earth Engine Data Catalog, 2021. (https://developers.google.com/earth-engine/datasets/catalog/ESA_WorldCover_v200).
- 13. Copernicus Land Monitoring Service, Urban Atlas land cover/ land use 2018 (vector), Europe, 6-yearly [Dataset], European Environment Agency, 2018. (https://doi.org/10.2909/fb4dffa1-6ceb-4cc0-8372-1ed354c285e6).
- 14. Copernicus Land Monitoring Service, Urban Atlas land cover/land use change 2012–2018 (vector), Europe, 6-yearly [Dataset], European Environment Agency, 2018. (https://doi.org/10.2909/949683b7-5795-4c72-845f-77d049010649).
- 15. NASA, MODIS land surface temperature and emissivity (MOD11), NASA Goddard Space Flight Center, n.d. (https://modis.gsfc.nasa.gov/data/dataprod/mod11.php).
- 16. NASA Jet Propulsion Laboratory, MEaSUREs: Land Surface temperature and emissivity ESDR, NASA Jet Propulsion Laboratory, California Institute of Technology, n.d. (https://lst.jpl.nasa.gov/measures).
- 17. Wan, Z. Collection-5 MODIS land surface temperature products users’ guide, Institute for Computational Earth System Science (ICESS), University of California, Santa Barbara, 2014. (https://earthdata.nasa.gov/s3fs-public/2025-04/MOD11_User_Guide_V5.pdf).
- 18. Potapov, P., Hansen, M.C., Pickens, A., Hernandez-Serna, A., Tyukavina, A., Turubanova, S., Zalles, V., Li, X., Khan, A., Stolle, F., Harris, N., Song, X.-P., Baggett, A., Kommareddy, I., Kommareddy, A. The global 2000–2020 land cover and land use change dataset derived from the Landsat archive: First results, Front. Remote Sens., 2022; volume 3, Article 856903. (https://doi.org/10.3389/frsen.2022.856903).
- 19. Turubanova, S., Potapov, P., Hansen, M.C., Li X., Tyukavina, A., Pickens, A.H., Hernandez-Serna, A., Pascual Arranz, A., Guerra-Hernandez, J., Senf, C., Häme, T., Valbuena, R., Eklundh, L., Brovkina, O., Navrátilová, B., Novotný, J., Harris, N., Stolle, F. Tree canopy extent and height change in Europe, 2001–2021, quantified using Landsat data archive, Remote Sens. Environ., 2023; volume 298, Article 113797. (https://doi.org/10.1016/j.rse.2023.113797).
- 20. Zhou, M., Li, D., Liao, K., Lu, D. Integration of Landsat time-series vegetation indices improves consistency of change detection, Int. J. Digit. Earth, 2023; volume 16(1), pp. 1276–1299. (https://doi.org/10.1080/17538947.2023.2200040).
- 21. Davis, Z., Nesbitt, L., Guhn, M., van den Bosch, M. Assessing changes in urban vegetation using Normalised Difference Vegetation Index (NDVI) for epidemiological studies, Urban For. Urban Green., 2023; volume 90, Article 128080. (https://doi.org/10.1016/j.ufug.2023.128080).
- 22. Farhan, M., Wu, T., Amin, M., Tariq, A., Guluzade, R., Alzahrani, H. Monitoring and prediction of the LULC change dynamics using time series remote sensing data with Google Earth Engine, Phys. Chem. Earth A/B/C, 2024; volume 136, Article 103689. (https://doi.org/10.1016/j.pce.2024.103689).
- 23. Kara, Y., Yavuz, Y., Lupo, A.R. Multi-index assessment of surface urban heat island (SUHI) dynamics in Samsun using Google Earth Engine, Atmosphere, 2025, volume 16(6), pp. 712. (https://doi.org/10.3390/atmos16060712).
- 24. Zhou, Y. Weng, Q. Building up a data engine for global urban mapping, Remote Sens. Environ., 2024; volume 311, Article 114242. (https://doi.org/10.1016/j.rse.2024.114242).
- 25. Liu, Z., Huang, S., Fang, C., Guan, L., Liu, M. Global urban and rural settlement dataset from 2000 to 2020, Sci. Data, 2024; volume 11, pp. 1359. (https://doi.org/10.1038/s41597-024-04195-y).
- 26. Gao, F., Liu, H., Zhang, Z., Gong, P. Global Impervious Surface Area (GISA) (1972–2021) [Dataset], Awesome GEE Community Catalog, 2023. (https://gee-community-catalog.org/projects/gisa).
- 27. Chen, M., Gao, J., O’Neill, B. Global urban projections under SSPs (2020–2100) [Dataset], Awesome GEE Community Catalog, 2020. (https://gee-community-catalog.org/projects/urban_projection).
- 28. Haxhiu, L. Aliaj B. Urban change detection in Tirana, Albania (2000–2025) using remote sensing and open geospatial data, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-4/W13, 2025, pp. 143–148. (https://doi.org/10.5194/isprs-archives-XLVIII-4-W13-2025-143-2025).
- 29. Yunitsyna, A. Sadushi, S. Assessing availability, distribution equity and accessibility of urban green spaces: A GIS-based framework, Open House Int., 2025; pp. 1–29. (https://doi.org/10.1108/OHI-01-2025-0031).
- 30. Milanović, M., Mićić Ponjiger, T., Lukić, T., Nenadović, S. Application of Landsat-derived NDVI in monitoring and assessment of vegetation cover changes in Central Serbia, Carpathian J. Earth Environ. Sci., 2019; volume 14(1), pp. 119–129. (https://doi.org/10.26471/cjees/2019/014/064).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-446a0d1a-25ef-44f3-8bef-cf630b3207f8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.