Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
High-power laser systems mostly use coherent or incoherent combined beams to achieve higher laser output power to satisfy the application. However, the far-field beam quality of laser will be reduced when propagating over atmosphere. Based on the propagation model of laser beams array, we use atmospheric coherence length, laser duration and average wind velocity to construct dynamic atmospheric turbulence which is characterized as a phase screen sequence. Meanwhile, considered as the indexes to evaluate beam quality, peak intensity and intensity in bucket are comparatively analysed in coherent and incoherent combined beams in far-field. The results indicate that in weaker turbulence circumstances, coherent combined beam has an advantage compared with the incoherent combined beams when laser duration is short, and coherent combination is more suitable for pulsed laser. With laser duration is increasing, the beam quality of incoherent and coherent combined beams both decrease and tend to be close. In stronger turbulence circumstances, the corresponding laser duration will be shorter when the beam quality of coherent combined beams is extraordinary close to that of incoherent combined beams. The researches can provide important data for high-power laser system to select the optimal beam combination mode to improve its performance.
Czasopismo
Rocznik
Tom
Strony
243--257
Opis fizyczny
Bibliogr. 36 poz., rys., tab.
Twórcy
autor
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
- Southwest Institute of Technical Physics, Chengdu 610041, China
autor
- Southwest Institute of Technical Physics, Chengdu 610041, China
autor
- Southwest Institute of Technical Physics, Chengdu 610041, China
autor
- Southwest Institute of Technical Physics, Chengdu 610041, China
autor
- Southwest Institute of Technical Physics, Chengdu 610041, China
autor
- Southwest Institute of Technical Physics, Chengdu 610041, China
autor
- Southwest Institute of Technical Physics, Chengdu 610041, China
Bibliografia
- [1] SPRANGLE P., HAFIZI B., TING A., FISCHER R.P., DAVIS C.C., NELSON W., High-power lasers for directed-energy applications: reply, Applied Optics 56(16), 2017, pp. 4825–4826, DOI: 10.1364/AO.56.004825.
- [2] VORONTSOV M.A., WEYRAUCH T., High-power lasers for directed-energy applications: comment, Applied Optics 55(35), 2016, pp. 9950–9953, DOI: 10.1364/AO.55.009950.
- [3] PANDEY R., MERCHEN D., STAPLETON D., PATTERSON S.G., Advancements in high-power diode laser stacks for defense applications, Proc. SPIE 8381, Laser Technology for Defense and Security VIII, 83810G (7 May 2012), DOI: 10.1117/12.916743.
- [4] O’CONNER M., High power fiber lasers for defense applications, [in] Lasers, Sources, and Related Photonic Devices, OSA Technical Digest (CD), San Diego, 2012, paper FW3C.1, DOI: 10.1364/FILAS.2012.FW3C.1.
- [5] ZERVAS M.N., CODEMARD C.A., High power fiber lasers: a review, IEEE Journal of Selected Topics in Quantum Electronics 20(5), 2014, pp. 219–241, DOI: 10.1109/JSTQE.2014.2321279.
- [6] WU C., ZHANG R., Study on the superposition characteristics of distorted beam in far field, Optik 127(4), 2016, pp. 1748–1753, DOI: 10.1016/j.ijleo.2015.11.003.
- [7] TAO R.M., SI L., MA Y.X., ZOU Y.C., ZHOU P., Tolerance on tilt error for the incoherent combination of fiber lasers in a real environment, Chinese Physics Letters 28(7), 2011, article 074219, DOI: 10.1088/0256-307X/28/7/074219.
- [8] ZHOU X.Y., CHEN Z.L., WANG Z.F., HOU J., XU X.J., High-power incoherent beam combining of fiber lasers based on a 7 × 1 all-fiber signal combiner, Optical Engineering 55(5), 2016, article 056103, DOI: 10.1117/1.OE.55.5.056103.
- [9] LEI C., GU Y., CHEN Z., WANG Z., ZHOU P., MA Y., XIAO H., LENG J., WANG X., HOU J., XU X., CHEN J., LIU Z., Incoherent beam combining of fiber lasers by an all-fiber 7 × 1 signal combiner at a power level of 14 kW, Optics Express 26(8), 2018, pp. 10421–10427, DOI: 10.1364/oe.26.010421.
- [10] WANG X.L., MA Y.X., ZHOU P., HE B., XIAO H., XUE Y.H., LIU C., LI Z., XU X.J., ZHOU J., LIU Z., ZHAO Y., Coherent beam combining of 137 W 2 × 2 fiber amplifier array, Optics Communications 284(8), 2011, pp. 2198–2201, DOI: 10.1016/j.optcom.2010.12.090.
- [11] KASHANI F.D., ALAVINEJAD M., GHAFARY B., Coherence characterization of partially coherent flat-topped beam propagating through atmospheric turbulence, Optica Applicata 39(2), 2009, pp. 429–440.
- [12] ZHOU P., WANG X.L., MA Y.X., MA H.T., XU X.J., LIU Z.J., Propagation of partially coherent partially phase-locked laser array in turbulent atmosphere, Optics Communications 283(6), 2010, pp. 1071–1074, DOI: 10.1016/j.optcom.2009.10.118.
- [13] WEYRAUCH T., VORONTSOV M., MANGANO J., OVCHINNIKOV V., BRICKER D., POLNAU E., ROSTOV A., Deep turbulence effects mitigation with coherent combining of 21 laser beams over 7 km, Optics Letters 41(4), 2016, pp. 840–843, DOI: 10.1364/OL.41.000840.
- [14] RANA P., MISHRA S.K., SAHOO S.P., BHALE D., SRIDHAR G., RAWAT V.S., Co-amplification: an efficient spectral beam combination approach for high power, closely separated dual wavelength dye laser systems, Optics Communications 451, 2019, pp. 367–373, DOI: 10.1016/j.optcom.2019.06.064.
- [15] TIAN J.Y., ZHANG J., PENG H.Y., LEI Y.X., QIN L., NING Y.Q., WANG L.J., High power diode laser source with a transmission grating for two spectral beam combining, Optik 192, 2019, article 162918, DOI: 10.1016/j.ijleo.2019.06.018.
- [16] SUN F.Y., ZHAO Y.F., SU S.L., HOU G.Y., LU Z.Y., ZHANG X., WANG L.J., TIAN S.C., TONG C.Z., WANG L.J., High beam quality broad-area diode lasers by spectral beam combining with double filters, Chinese Optics Letters 17(01), 2019, article 011401, DOI: 10.3788/COL201917.011401.
- [17] NELSON W., SPRANGLE P., DAVIS C.C., Atmospheric propagation and combining of high-power lasers: reply, Applied Optics 55(29), 2016, pp. 8338–8339, DOI: 10.1364/AO.55.008338.
- [18] MAHDIEH M.H., Numerical approach to laser beam propagation through turbulent atmosphere and evaluation of beam quality factor, Optics Communications 281(13), 2008, pp. 3395–3402, DOI: 10.1016/j.optcom.2008.02.040.
- [19] LAZER N., ARUL TEEN Y.P., Free Space Optical Communication and Laser Beam Propagation through Turbulent Atmosphere: A Brief Survey, 2019 International Conference on Recent Advances in Energy-efficient Computing and Communication (ICRAECC), Nagercoil, India, 2019, pp. 1–6, DOI: 10.1109/ICRAECC43874.2019.8994973.
- [20] GOLMOHAMMADY S., GHAFARY B., The polarization and coherence behavior of the flat-topped array beam through non-Kolmogorov turbulence, Optica Applicata 49(1), 2019, pp. 75–88, DOI: 10.5277/oa190107.
- [21] KULIKOV V.A., VORONTSOV M.A., Analysis of the joint impact of atmospheric turbulence and refractivity on laser beam propagation, Optics Express 25(23), 2017, pp. 28524–28535, DOI: 10.1364/oe.25.028524.
- [22] TADAYYONI S., SHAYGANMANESH M., Investigation of coherent and incoherent laser beams propagation through turbulent atmosphere, International Journal Optics and Photonics 13(2), 2019, pp. 145–154, DOI: 10.29252/ijop.13.2.145.
- [23] ZHOU P., LIU Z.J., XU X.J., CHU X.X., Comparative study on the propagation performance of coherently combined and incoherently combined beams, Optics Communications 282(8), 2009, pp. 1640–1647, DOI: 10.1016/j.optcom.2009.01.011.
- [24] GRASSO R.J., Atmospheric propagation of coherently and incoherently combined quantum cascade lasers, Proc. SPIE 10408, Laser Communication and Propagation through the Atmosphere and Oceans VI, 104080A (31 August 2017), DOI: 10.1117/12.2275867.
- [25] ANDREWS L.C., PHILLIPS R.L., Laser Beam Propagation through Random Media, SPIE Press, 2005, DOI: 10.1117/3.626196.
- [26] PHILLIPS J.D., GODA M.E., SCHMIDT J., Atmospheric turbulence simulation using liquid crystal spatial light modulators, Proc. SPIE 5894, Advanced Wavefront Control: Methods, Devices, and Applications III, 589406 (22 August 2005), DOI: 10.1117/12.620407.
- [27] RODDIER N.A., Atmospheric wavefront simulation using Zernike polynomials, Optical Engineering, 29(10), 1990, pp. 1174–1180, DOI: 10.1117/12.55712.
- [28] WILCOX C.C., SANTIAGO F., MARTINEZ T., ANDTEWS J.R., RESTAINO S.R., CORLEY M., TEARE S.W., AGRAWAL B.N., A method of generating atmospheric turbulence with a liquid crystal spatial light modulator, Proc. SPIE 7816, Advanced Wavefront Control: Methods, Devices, and Applications VIII, 78160E (12 August 2010), DOI: 10.1117/12.861510.
- [29] TATARSKI V.I., Wave Propagation in a Turbulent Medium, McGraw, 1961.
- [30] NOLL R.J., Zernike polynomials and atmospheric turbulence, Journal of the Optical Society of America 66(3), 1976, pp. 207–211, DOI: 10.1364/JOSA.66.000207.
- [31] FRIED D.L., Statistics of a geometric representation of wavefront distortion, Journal of the Optical Society of America 55(11), 1965, pp. 1427–1435, DOI: 10.1364/JOSA.55.001427.
- [32] FRIED D.L., Time-delay-induced mean-square error in adaptive optics, Journal of the Optical Society of America A 7(7), 1990, pp. 1224–1225, DOI: 10.1364/JOSAA.7.001224.
- [33] THOMPSON L., Adaptive Optics in Astronomy (Edited by François Roddier), Physics Today 53(4), 2000, p. 69, DOI: 10.1063/1.2405462.
- [34] SCHOCK M., SPILLAR E.J., Method for a quantitative investigation of the frozen flow hypothesis, Journal of the Optical Society of America A 17(9), 2000, pp. 1650–1658, DOI: 10.1364/JOSAA.17.001650.
- [35] POYNEER L., VAN DAM M., VÉRAN J.P., Experimental verification of the frozen flow atmospheric turbulence assumption with use of astronomical adaptive optics telemetry, Journal of the Optical Society of America A 26(4), 2009, pp. 833–846, DOI: 10.1364/josaa.26.000833.
- [36] VOELZ D.G., Computational Fourier Optics: A MATLAB Tutorial, SPIE Press, 2011.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4469706e-68d6-4be9-b47c-2bb57a6d953e