PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Asymptotic of weak solutions for linear elliptic nonlocal Robin problem without Dini-continuity condition in a plane angle domain

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We investigate the behaviour of weak solutions to the nonlocal Robin problem for linear elliptic divergence second order equations in a neighbourhood of the boundary corner point. We find the exponent of the solution decreasing rate under the assumption that the leading coefficients of the equations do not satisfy the Dini-continuity condition.
Rocznik
Strony
9--24
Opis fizyczny
Bibliogr. 13 poz., rys.
Twórcy
autor
  • Department of Mathematics and Informatics, University of Warmia and Mazury in Olsztyn, Słoneczna 54, 10-710 Olsztyn, Poland
Bibliografia
  • [1] M. Borsuk and V. Kondratiev, Elliptic Boundary Value Problems of Second Order in Piecewise Smooth Domains, Vol. 69, Elsevier 2006, 53l, DOI l0.l0l6/S0924-6509(06)80026-7, North-Holland Mathematical Library.
  • [2] Bensoussan and J.-L. Lions, Impulse Control and Quasi-variational Inequalities, Paris l984.
  • [3] V. Bicadzeand A. A. Samarski, On some simple generalizations of linear elliptic boundary value problems, Sov. Math. l0 (l969).
  • [4] M. V. Borsuk and K. Zyjewski, Nonlocal Robin problem for elliptic second order equations in a plane domain with a boundary corner point, Appl. Math. 38 (20ll), no. 4, 369-4ll, DOI l0.4064/am38-4-l.
  • [5] P. L. Gurevich, Solvability of nonlocal elliptic problems in dihedral angles, Mat. Zametki 72 (2002), l78-l97, DOI l0.l023/A:l0l9889609907; English transl., Math. Notes 72 (2002), no. 2, l58-l76.
  • [6] P. L. Gurevich, Asymptotic behavior of solutions of nonlocal elliptic problems in plane angles, Tr. Semin. im. I. G. Petrovskogo 23 (2003), 93-l26, 409-4l0, DOI l0.l023/B:J0TH.00000l6050.97763.74; English transl., J. Math. Sci. l20 (2004), no. 3, l295-l3l2.
  • [7] V. A. Kondratev, Boundary value problems for elliptic equations in domains with conical or angular points, Tr. Mosk. Mat. Obs. 16 (1967), 209-292; English transl. in Trans. Moscow Math. Soc. 16 (1967).
  • [8] V. Mityushev and S. V. Rogosin, Constructive Methods for Linear and Nonlinear Boundary Value Problems for Analytic Functions, Chapman and Hall / CRC, Boca Raton 1999.
  • [9] L. Skubachevskii, Elliptic Problems with Nonlocal Conditions Near the Boundary, Mat. Sb. 129 (1986), 279-302; English transl. in Math. USSR Sb. 57 (1987).
  • [10] L. Skubachevskii, Elliptic Functional Differential Equations and Applications, Birkhauser, Basel-Boston-Berlin 1997.
  • [11] L. Skubachevskii, Nonclassical boundary value problems. I, Sovrem. Mat. Fundam. Napravl. 26 (2007), 3-132, DOI 10.1007/s10958-008-9218-9; English transl., J. Math. Sci. 155 (2008), no. 2,199-334.
  • [12] L. Skubachevskii, Nonclassical boundary value problems. II, Sovrem. Mat. Fundam. Napravl. 33 (2009), 3-179, DOI 10.1007/s10958-010-9873-5; English transl., J. Math. Sci. 166 (2010), no. 4, 377-561.
  • [13] P. Soldatov, The Bitsadze-Samarskii problem for functions analytic in the sense ofDouglis, Differ. Uravn. 41 (2005), no. 3,396-407,431, DOI 10.1007/s10625-005-0173-7; English transl., Differ. Equ. 41 (2005), no. 3, 416-428.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4467d329-6950-4b6e-b9c5-a0f43d4ba05c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.