Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We investigate the behaviour of weak solutions to the nonlocal Robin problem for linear elliptic divergence second order equations in a neighbourhood of the boundary corner point. We find the exponent of the solution decreasing rate under the assumption that the leading coefficients of the equations do not satisfy the Dini-continuity condition.
Wydawca
Czasopismo
Rocznik
Tom
Strony
9--24
Opis fizyczny
Bibliogr. 13 poz., rys.
Twórcy
autor
- Department of Mathematics and Informatics, University of Warmia and Mazury in Olsztyn, Słoneczna 54, 10-710 Olsztyn, Poland
Bibliografia
- [1] M. Borsuk and V. Kondratiev, Elliptic Boundary Value Problems of Second Order in Piecewise Smooth Domains, Vol. 69, Elsevier 2006, 53l, DOI l0.l0l6/S0924-6509(06)80026-7, North-Holland Mathematical Library.
- [2] Bensoussan and J.-L. Lions, Impulse Control and Quasi-variational Inequalities, Paris l984.
- [3] V. Bicadzeand A. A. Samarski, On some simple generalizations of linear elliptic boundary value problems, Sov. Math. l0 (l969).
- [4] M. V. Borsuk and K. Zyjewski, Nonlocal Robin problem for elliptic second order equations in a plane domain with a boundary corner point, Appl. Math. 38 (20ll), no. 4, 369-4ll, DOI l0.4064/am38-4-l.
- [5] P. L. Gurevich, Solvability of nonlocal elliptic problems in dihedral angles, Mat. Zametki 72 (2002), l78-l97, DOI l0.l023/A:l0l9889609907; English transl., Math. Notes 72 (2002), no. 2, l58-l76.
- [6] P. L. Gurevich, Asymptotic behavior of solutions of nonlocal elliptic problems in plane angles, Tr. Semin. im. I. G. Petrovskogo 23 (2003), 93-l26, 409-4l0, DOI l0.l023/B:J0TH.00000l6050.97763.74; English transl., J. Math. Sci. l20 (2004), no. 3, l295-l3l2.
- [7] V. A. Kondratev, Boundary value problems for elliptic equations in domains with conical or angular points, Tr. Mosk. Mat. Obs. 16 (1967), 209-292; English transl. in Trans. Moscow Math. Soc. 16 (1967).
- [8] V. Mityushev and S. V. Rogosin, Constructive Methods for Linear and Nonlinear Boundary Value Problems for Analytic Functions, Chapman and Hall / CRC, Boca Raton 1999.
- [9] L. Skubachevskii, Elliptic Problems with Nonlocal Conditions Near the Boundary, Mat. Sb. 129 (1986), 279-302; English transl. in Math. USSR Sb. 57 (1987).
- [10] L. Skubachevskii, Elliptic Functional Differential Equations and Applications, Birkhauser, Basel-Boston-Berlin 1997.
- [11] L. Skubachevskii, Nonclassical boundary value problems. I, Sovrem. Mat. Fundam. Napravl. 26 (2007), 3-132, DOI 10.1007/s10958-008-9218-9; English transl., J. Math. Sci. 155 (2008), no. 2,199-334.
- [12] L. Skubachevskii, Nonclassical boundary value problems. II, Sovrem. Mat. Fundam. Napravl. 33 (2009), 3-179, DOI 10.1007/s10958-010-9873-5; English transl., J. Math. Sci. 166 (2010), no. 4, 377-561.
- [13] P. Soldatov, The Bitsadze-Samarskii problem for functions analytic in the sense ofDouglis, Differ. Uravn. 41 (2005), no. 3,396-407,431, DOI 10.1007/s10625-005-0173-7; English transl., Differ. Equ. 41 (2005), no. 3, 416-428.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4467d329-6950-4b6e-b9c5-a0f43d4ba05c