Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Accurate assessment of the effects of parameters on the flotation process is important for understanding the complex flotation mechanisms. To address the problem of unsatisfactory prediction of large sample flotation data (641 sets) by traditional machine learning algorithms, four advanced algorithms (GBDT, CatBoost, LightBGM and XGBoost) are used in this paper to investigate the effects of feed properties and flotation conditions on the effectiveness of coal flotation. It was found that the data at flotation recoveries below <40% were difficult to predict effectively by machine learning algorithms due to abnormal flotation results caused by lower flotation reagent dosages. An importance analysis of flotation parameters and prediction of flotation results were carried out based on the reordered data. The results showed that the fraction and ash content of -74 um in the feed are the main factors affecting concentrate yield and ash content. The XGBoost model also achieved the best prediction results compared to other models, and the prediction coefficient of determination R2 reached 0.877 and 0.971 for concentrate yield and ash content, respectively. The results are expected to provide a reference for the intelligent control of coal beneficiation plant by machine learning technology in the future.
Słowa kluczowe
Rocznik
Tom
Strony
art. no. 196385
Opis fizyczny
Bibliogr. 31 poz., tab., wykr.
Twórcy
autor
- Zaozhuang Mining Group Co., Ltd, Zaozhuang 277000, China
autor
- Chaili Coal Mine Co., Ltd, Zaozhuang 277000, China
autor
- Chaili Coal Mine Co., Ltd, Zaozhuang 277000, China
autor
- Chaili Coal Mine Co., Ltd, Zaozhuang 277000, China
autor
- Chaili Coal Mine Co., Ltd, Zaozhuang 277000, China
autor
- Zaozhuang Mining Group Co., Ltd, Zaozhuang 277000, China
autor
- Key Laboratory of Coal Processing and Efficient Utilization (Ministry of Education), School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, China
autor
- Key Laboratory of Coal Processing and Efficient Utilization (Ministry of Education), School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, China
Bibliografia
- 1. ABKHOSHK, E., KOR, M., REZAI, B., 2010. A study on the effect of particle size on coal flotation kinetics using fuzzy logic. Expert Syst. Appl. 37, 5201-5207.
- 2. ALI, D., HAYAT, M.B., ALAGHA, L., MOLATLHEGI, O.K., 2018. An evaluation of machine learning and artificial intelligence models for predicting the flotation behavior of fine high-ash coal. Adv. Powder Technol. 29, 3493-3506.
- 3. ARANCIBIA-BRAVO, M.P., LUCAY, F.A., SEPúLVEDA, F.D., CORTéS, L., CISTERNAS, L.A., 2022. Response Surface Methodology for Copper Flotation Optimization in Saline Systems. Minerals 12, 1131.
- 4. BU, X., VAHED, A.T., GHASSA, S., CHELGANI, S.C., 2021. Modelling of coal flotation responses based on operational conditions by random forest. Int. J. Oil Gas Coal Technol. 27, 457-468.
- 5. BU, X., XIE, G., PENG, Y., CHEN, Y., 2016. Kinetic modeling and optimization of flotation process in a cyclonic microbubble flotation column using composite central design methodology. Int. J. Miner. Process. 157, 175-183.
- 6. BU, X., ZHANG, T., CHEN, Y., XIE, G., PENG, Y., 2020. Comparative study of conventional cell and cyclonic microbubble flotation column for upgrading a difficult-to-float Chinese coking coal using statistical evaluation. Int. J. Coal Prep. Util. 40, 359-375.
- 7. BU, X., ZHOU, S., DANSTAN, J.K., BILAL, M., UL HASSAN, F., CHAO, N., 2024. Prediction of coal flotation performance using a modified deep neural network model including three input parameters from feed. Energy Sources Part A-Recovery Util. Environ. Eff. 10.1080/15567036.2022.2036272, 1-13.
- 8. CARMONA, P., CLIMENT, F., MOMPARLER, A., 2019. Predicting failure in the U.S. banking sector: An extreme gradient boosting approach. Int. Rev. Econ. Financ. 61, 304-323.
- 9. CHEHREH CHELGANI, S., MATIN, S.S., MAKAREMI, S., 2016. Modeling of free swelling index based on variable importance measurements of parent coal properties by random forest method. Measurement 94, 416-422.
- 10. CHELGANI, S.C., HOMAFAR, A., NASIRI, H., LAKSAR, M.R., 2024. CatBoost-SHAP for modeling industrial operational flotation variables - A "conscious lab" approach. Miner. Eng. 213, 108754.
- 11. CHELGANI, S.C., MATIN, S.S., 2018. Study the relationship between coal properties with Gieseler plasticity parameters by random forest. Int. J. Oil Gas Coal Technol. 17, 113-127.
- 12. DU PLESSIS, B.J., DE VILLIERS, G.H., 2007. The application of the Taguchi method in the evaluation of mechanical flotation in waste activated sludge thickening. Resour. Conserv. Recycl. 50, 202-210.
- 13. FLORES, V., HENRíQUEZ, N., ORTIZ, E., MARTINEZ, R., LEIVA, C., 2024. Random forest for generating recommendations for predicting copper recovery by flotation. IEEE Latin Am. Trans. 22, 443-450.
- 14. GOMEZ-FLORES, A., HEYES, G.W., ILYAS, S., KIM, H., 2022. Prediction of grade and recovery in flotation from physicochemical and operational aspects using machine learning models. Miner. Eng. 183, 107627.
- 15. GUNER, M., AKYILDIZ, O., BASARIR, H., KOWALCZUK, P., 2024. Exploring the impact of thiol collectors system on copper sulfide flotation through machine learning-driven modeling. Physicochem. Probl. Mineral Pro. 60, 191709.
- 16. LUBISI, T.P., NHETA, W., NTULI, F., 2018. Optimization of Reverse Cationic Flotation of Low-Grade Iron Oxide from Fluorspar Tails Using Taguchi Method. Arab. J. Sci. Eng. 43, 2403-2412.
- 17. MA, X., SHA, J., WANG, D., YU, Y., YANG, Q., NIU, X., 2018. Study on a prediction of P2P network loan default based on the machine learning LightGBM and XGboost algorithms according to different high dimensional data cleaning. Electron. Commer. Res. Appl. 31, 24-39.
- 18. MENG, S., WEN, S., HAN, G., WANG, X., FENG, Q., 2022. Wastewater Treatment in Mineral Processing of Non-Ferrous Metal Resources: A Review. Water 14, 726.
- 19. NAZARI, S., CHEHREH CHELGANI, S., SHAFAEI, S.Z., SHAHBAZI, B., MATIN, S.S., GHARABAGHI, M., 2019. Flotation of coarse particles by hydrodynamic cavitation generated in the presence of conventional reagents. Sep. Purif. Technol. 220, 61-68.
- 20. PAWLISZAK, P., BRADSHAW-HAJEK, B.H., SKINNER, W., BEATTIE, D.A., KRASOWSKA, M., 2024. Frothers in flotation: A review of performance and function in the context of chemical classification. Miner. Eng. 207, 108567.
- 21. RAMUDZWAGI, M., TSHIONGO-MAKGWE, N., NHETA, W., 2020. Recent developments in beneficiation of fine and ultra-fine coal -review paper. J. Clean Prod. 276, 122693.
- 22. SACHINRAJ, D., KOPPARTHI, P., SAMANTA, P., MUKHERJEE, A.K., 2022. Optimization of Column Flotation for Fine Coal Using Taguchi Method. Trans. Indian Inst. Met. 75, 1255-1267.
- 23. SHAHBAZI, B., CHEHREH, C.S., MATIN, S.S., 2017. Prediction of froth flotation responses based on various conditioning parameters by Random Forest method. Colloid Surf. A-Physicochem. Eng. Asp. 529, 936-941.
- 24. SUN, X., LIU, M., SIMA, Z., 2020. A novel cryptocurrency price trend forecasting model based on LightGBM. Financ. Res. Lett. 32, 101084.
- 25. SUN, Y., BU, X., ULUSOY, U., GUVEN, O., VAZIRI HASSAS, B., DONG, X., 2023. Effect of surface roughness on particle-bubble interaction: A critical review. Miner. Eng. 201, 108223.
- 26. VINNETT, L., LEóN, R., MESA, D., 2023. Artificial neural network (ANN) modelling to estimate bubble size from macroscopic image and object features. Physicochem. Probl. Mineral Pro. 59, 185759.
- 27. WANG, C., WANG, H., LIU, Y., HUANG, L., 2016. Optimization of surface treatment for flotation separation of polyvinyl chloride and polyethylene terephthalate waste plastics using response surface methodology. J. Clean Prod. 139, 866-872.
- 28. WANG, X., BU, X., NI, C., ZHOU, S., YANG, X., ZHANG, J., ALHESHIBRI, M., PENG, Y., XIE, G., 2021. Effect of scrubbing medium’s particle size on scrubbing flotation performance and mineralogical characteristics of microcrystalline graphite. Miner. Eng. 163, 106766.
- 29. ZHANG, C., ZHANG, Y., SHI, X., ALMPANIDIS, G., FAN, G., SHEN, X., 2019. On Incremental Learning for Gradient Boosting Decision Trees. Neural Process. Lett. 50, 957-987.
- 30. ZHANG, L., JáNOŠíK, D., 2024. Enhanced short-term load forecasting with hybrid machine learning models: CatBoost and XGBoost approaches. Expert Syst. Appl. 241, 122686.
- 31. ZHAO, B., HU, S., ZHAO, X., ZHOU, B., LI, J., HUANG, W., CHEN, G., WU, C., LIU, K., 2022. The application of machine learning models based on particles characteristics during coal slime flotation. Adv. Powder Technol. 33, 103363.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-44597922-a28f-4c64-9335-4d446439ba79
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.