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SOME REMARKS ABOUT K-CONTINUITY OF
K-SUPERQUADRATIC MULTIFUNCTIONS

KATARZYNA TROCZKA-PAWELEC

Abstract

Let X = (X,+) be an arbitrary topological group. The set-valued function F : X →
n(Y ) is called K-superquadratic iff

F (x+ y) + F (x− y) ⊂ 2F (x) + 2F (y) +K,

for all x, y ∈ X, where Y denotes a topological vector space and K is a cone.
In this paper the K−continuity problem of multifunctions of this kind will be con-

sidered with respect to K−boundedness. The case where Y = RN will be considered
separately.

1. Introduction

LetX = (X,+) be an arbitrary topological group. A real-valued function
f is called superquadratic, if it fulfils inequality

(1) 2f(x) + 2f(y) ≤ f(x+ y) + f(x− y), x, y ∈ X.

If the sign ” ≤ ” in (1) is replaced by ” ≥ ”, then f is called subquadratic.
The continuity problem of functions of this kind was considered in [2]. This
problem was also considered in the class of set-valued functions. By the set-
valued functions we understand functions of the type F : X → 2Y , where
X and Y are given sets. Throughout this paper set-valued functions will
be always denoted by capital letters. A set-valued function F is called
superquadratic if it satisfies inclusion

(2) 2F (x) + 2F (y) ⊂ F (x+ y) + F (x− y), x, y ∈ X,

and subquadratic set-valued function, if it satisfies inclusion defined in this
form

(3) F (x+ y) + F (x− y) ⊂ 2F (x) + 2F (y), x, y ∈ X.
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For single-valued real functions properties of subquadratic and superquadratic
functions are quite analogous and, in view of the fact that if a function f
is subquadratic, then the function −f is superquadratic and conversely, it
is not necessary to investigate functions of these two kinds individually. In
the case of set-valued functions the situation is different. Even if proper-
ties of subquadratic and superquadratic set-valued functions are similar, we
have to proved them separately. If the sign ” ⊂ ” in the inclusions above
is replaced by ” = ”, then F is called quadratic set-valued function. The
class of quadratic set-valued functions is an important subclass of the class
of subquadratic and superquadratic set-valued functions. Quadratic set-
valued functions have already extensive bibliography (see W. Smajdor [5],
D. Henney [1] and K. Nikodem [4]). The continuity problem of subquadratic
and superquadratic set-valued functions was considered in [6] and [7].

Adding a cone K in the space of values of a set-valued function F lets
us consider a K-superquadratic set-valued function , that is solution of the
inclusion

(4) F (x+ y) + F (x− y) ⊂ 2F (x) + 2F (y) +K, x, y ∈ X.

The concept of K-superquadraticity is related to real-valued superquadratic
functions. Note, in the case when F is a single-valued real function and
K = [0,∞), we obtain the standard definition of superquadratic functionals
(1). Similarly, if a set-valued function F satisfies the following inclusion

(5) 2F (x) + 2F (y) ⊂ F (x+ y) + F (x− y) +K, x, y ∈ X

then it is called K-subquadratic. The K-continuity problem of multifunc-
tion of this kind was considered in [9]. In this paper we will consider the K-
continuity problem for K-superquadratic set-valued functions. Likewise as
in functional analysis we can look for connections between K-boundedness
and K-semicontinuity of set-valued functions of this kind.

Assuming K = {0} in (4) and (5) we obtain the inclusions (2) and (3).
Let us start with the notations used in this paper. Let Y be a topological

vector space. We consider the family n(Y ) of all non-empty subsets of as a
topological space with the Hausdorff topology. In this topology the set

NW (A) := {B ∈ n(Y ) : A ⊂ B +W,B ⊂ A+W}

where W runs the base of neighbourhoods of zero in Y , form a base of
neighbourhoods of a set A ∈ n(Y ). By cc(Y ) we denote the family of all
compact and convex members of n(Y ). The term set-valued function will
be abbreviated to the form s.v.f.

Now we present here some definitions for the sake of completeness. Recall
that a set K ⊂ Y is called a cone iff K + K ⊂ K and sK ⊂ K for all
s ∈ (0,∞).
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Definition 1. (cf. [3]) A cone K in a topological vector space Y is said to
be a normal cone iff there exists a base W of zero in Y such that

W = (W +K) ∩ (W −K)

for all W ∈W.

Definition 2. (cf. [3]) An s.v.f. F : X → n(Y ) is said to be K-upper semi-
continuous (abbreviated K−u.s.c.) at x0 ∈ X iff for every neighbourhood V
of zero in Y there exists a neighbourhood U of zero in X such that

F (x) ⊂ F (x0) + V +K

for every x ∈ x0 + U .

Definition 3. (cf. [3]) An s.v.f. F : X → n(Y ) is said to be K-lower semi-
continuous (abbreviated K−l.s.c.) at x0 ∈ X iff for every neighbourhood V
of zero in Y there exists a neighbourhood U of zero in X such that

F (x0) ⊂ F (x) + V +K

for every x ∈ x0 + U .

Definition 4. (cf. [3]) An s.v.f. F : X → n(Y ) is said to be K−continuous
at x0 ∈ X iff it is both K−u.s.c. and K−l.s.c. at x0. It is said to be
K−continuous iff it is K−continuous at each point of X.

Note that in the case where K = {0} the K−continuity of F means its
continuity with respect to the Hausdorff topology on n(Y ).

In the proof of the main theorems we will use some known lemmas ( see
Lemma 1.1, Lemma 1.3, Lemma 1.6 and Lemma 1.9 in [3]). The first
lemma says that for a convex subset A of an arbitrary real vector space Y
the equality (s + t)A = sA + tA holds for every s, t ≥ 0 or (s,t<0). The
second lemma says that in a real vector space Y for two convex subsets
A,B the set A+B is also convex. The next lemma says that if A ⊂ Y is a
closed set and B ⊂ Y is a compact set, where Y denotes a real topological
vector space, then the set A+B is closed. For any sets A,B ⊂ Y , where Y
denotes the same space as above, the inclusion A + B ⊂ A+B holds and
equality holds if and only if the set A+B is closed.

Let us adopt the following three definitions which are natural extension
of the concept of the boundedness for real-valued functions.

Definition 5. An s.v. f. F : X → n(Y ) is said to be K−lower bounded on
a set A ⊂ X iff there exists a bounded set B ⊂ Y such that F (x) ⊂ B +K
for all x ∈ A. An s.v. f. F : X → n(Y ) is said to be K−lower bounded at
a point x ∈ X iff there exists a neighbourhood Ux of zero in X such that F
is K−lower bounded on a set x+ Ux
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Definition 6. An s.v. f. F : X → n(Y ) is said to be K−upper bounded on
a set A ⊂ X iff there exists a bounded set B ⊂ Y such that F (x) ⊂ B −K
for all x ∈ A. An s.v. f. F : X → n(Y ) is said to be K−upper bounded at
a point x ∈ X iff there exists a neighbourhood Ux of zero in X such that F
is K−upper bounded on a set x+ Ux

Definition 7. An s.v. function F : X → n(Y ) is said to be locally K-lower
(upper) bounded in X if for every x ∈ X there exists a neighbourhood Ux

of zero in X such that F is K-lower (upper) bounded on a set x + Ux. It
is said to be locally K-bounded in X if it is both locally K-lower and locally
K-upper bounded in X.

Definition 8. We say that 2-divisible topological group X has the property
(12) iff for every neighbourhood V of zero there exists a neighbourhood W of
zero such that 1

2W ⊂W ⊂ V .

For the K−superquadratic set-valued functions the following two theo-
rems hold.

Theorem 1. (cf. [8]) Let X be a 2-divisible topological group with property
(12), Y locally convex topological real vector space and K ⊂ Y a closed
normal cone. If a K-superquadratic s.v.f. F : X → cc(Y ) is K-u.s.c. at
zero, F (0) = {0} and locally K- bounded in X, then it is K-u.s.c. in X.

Theorem 2. (cf. [10]) Let X be a 2-divisible topological group, Y locally
convex topological real vector space and K ⊂ Y a closed normal cone. If a
K-superquadratic s.v.f. F : X → cc(Y ) is K-u.s.c. at zero, F (0) = {0} and
locally K- bounded in X then it is K-l.s.c. in X.

Let us note, that Theorem 1 and Theorem 2, by Definition 4, yield di-
rectly the following main theorem for K-superquadratic multifunctions.

Theorem 3. Let X be a 2-divisible topological group with property (12), Y
locally convex topological real vector space and K ⊂ Y a closed normal cone.
If a K-superquadratic s.v.f. F : X → cc(Y ) is K-u.s.c. at zero, F (0) = {0}
and locally K- bounded in X, then it is K-continuous in X.

Let us introduce the following definitions.

Definition 9. An s.v. f. F : X → n(Y ) is said to be weakly K−lower
bounded on a set A ⊂ X iff there exists a bounded set B ⊂ Y such that
F (x)

⋂
(B +K) 6= ∅ for all x ∈ A.

Definition 10. An s.v. f. F : X → n(Y ) is said to be weakly K−upper
bounded on a set A ⊂ X iff there exists a bounded set B ⊂ Y such that
F (x)

⋂
(B −K) 6= ∅ for all x ∈ A.
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Definition 11. An s.v. f. F : X → n(Y ) is said to be locally weakly
K−upper bounded in X iff for every x ∈ X there exists a neighbourhood Ux

of zero in X such that F is K−upper bounded on a set x+ Ux.

Definition 12. An s.v. f. F : X → n(Y ) is said to be locally weakly
K−lower bounded in X iff for every x ∈ X there exists a neighbourhood Ux

of zero in X such that F is K−lower bounded on a set x+ Ux.

Definition 13. An s.v. f. F : X → n(Y ) is said to be locally weakly K−
bounded in X iff for every x ∈ X there exists a neighbourhood Ux of zero in
X such that F is weakly K−lower and weakly K−upper bounded on a set
x+ Ux.

Clearly, if F is K−upper ( K−lower ) bounded on a set A, then it is
weakly K−upper ( K−lower ) bounded on a set A. In the case of single-
valued functions these definitions coincide.

For theK−superquadratic set-valued functions the following lemma holds.

Lemma 1. Let X be a 2−divisible topological group satisfying condition(
1
2

)
, Y topological vector space and K ⊂ Y a cone. Let F : X → B(Y ) be

a K−superquadratic s.v.f. , such that F (0) = {0} and G : X → n(Y ) be an
s.v.f. with

(6) G(x) ⊂ F (x) +K

for all x ∈ X.

If F is K−lower bounded at zero and G is locally weakly K-upper bounded
in X , then F is locally K−lower bounded in X.

Proof. Let x ∈ X. There exist a bounded set B1 ⊂ Y and a symmetric
neighbourhood U1 of zero in X such that

G(x− t) ∩ (B1 −K) 6= ∅, t ∈ U1,

which implies that that for all t ∈ U1 there exists a ∈ G(x − t) and a ∈
(B1 −K). Consequently, we get

(7) 0 = a− a ∈ G(x− t)−B1 +K

for all t ∈ U1. Since F is K−lower bounded at zero, there exist a symmetric
neighbourhood U2 of zero in X and a bounded set B2 ⊂ Y such that

(8) F (t) ⊂ B2 +K, t ∈ U2.

Let Ũ be a symmetric neighbourhood of zero in X with 1
2 Ũ ⊂ Ũ ⊂ U1∩U2.

Let t ∈ 1
2 Ũ . Using (6), (7) i (8), we obtain

F (x+t)+0 ⊂ F (x+t)+G(x−t)−B1+K ⊂ F (x+t)+F (x−t)−B1+K ⊂
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⊂ 2F (x) + 2F (t)−B1 +K ⊂ 2F (x) + 2B2 −B1 +K.

Define B̃ := 2F (x) + 2B2 − B1. Since F (x) is a bounded set, then the set
B̃ is also bounded as the sum of bounded sets. Therefore

F (x+ t) ⊂ B̃ +K, t ∈ 1

2
Ũ ,

which means that F is locally K−lower bounded in X. �

In the case of K-superquadratic multifunctions we require Y space to
be locally bounded topological vector space. Then the following theorem
holds.

Theorem 4. Let X be a 2-divisible topological group with property (12), Y
locally convex topological vector space and K ⊂ Y a closed normal cone. If
a K-superquadratic s.v.f. F : X → cc(Y ) is K-u.s.c. at zero, F (0) = {0}
and locally K- upper bounded in X, then it is K-continous in X.

Proof. Let W be a bounded neighbourhood of zero in Y . Since F is K-u.s.c.
at zero and F (0) = {0}, then there exists a neighbourhood U of zero in X
such that

F (t) ⊂ V +K

for all t ∈ U , which means that F isK-lower bounded at zero. The condition
of locally K-upper boundedness in X implies F is locally K-weakly upper
bounded in X. By Lemma 1 (G = F ) F is locally K-lower bounded in X.
Consequently by Theorem 3 F is K−continuous at each point of X. �

2. The case n(RN )

Now we consider the case where the space of values is n(RN ). In our
next proof, we will use known following lemma.

Lemma 2. (cf. [9]) Let Y be a topological vector space and K be a cone in
Y . Let A,B,C be non-empty subsets of Y such that A+ C ⊂ B + C +K.
If B is convex and C is bounded then A ⊂ B +K.

For theK−superquadratic set-valued functions the following lemma holds.

Lemma 3. Let X be a topological group and K a closed cone in RN . Let
F : X → cc(RN ) be a K−superquadratic s.v.f. with F (0) = {0}. If F is
K-l.s.c. at some point x0 ∈ X, then it is K-l.s.c. at zero.

Proof. Let W be a neighbourhood of zero in Y .There exists a convex neigh-
bourhood V of zero in Y such that the set V is compact with 3V ⊂ W .
Since F is K-l.s.c. at x0 ∈ X then there exists a symmetric neighbourhood
U of zero in X such that

(9) F (x0) ⊂ F (x0 + t) + V +K,
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(10) F (x0) ⊂ F (x0 − t) + V +K,

for all t ∈ U .
Let t ∈ U . By convexity of the set F (x0) and by (9) i (10), we obtain

2F (x0) ⊂ F (x0 + t) + F (x0 − t) + 2V +K ⊂ 2F (x0) + 2F (t) + 2V +K.

Then

(11) F (x0) + {0} ⊂ F (xo) + F (t) + V +K t ∈ U.

Since F (x0) is a bounded set and F (t)+V is a convex set, then by Lemma
2, we have

{0} ⊂ V + F (t) +K

for all t ∈ U . Note that the set V +F (t)+K is closed as a sum of compact
and closed set. Consequently, by condition F (0) = {0}, we obtain

F (0) ⊂ V + F (t) +K ⊂ F (t) +W +K

for all t ∈ U , which means F is K-l.s.c. at zero. �

This article is the introduction to the discussion on the K-continuity
problem for K-superquadratic set-valued functions. In the theory of K-
subquadratic and K-superquadratic set-valued functions an important role
is played by theorems giving possibly weak conditions under which such
multifunctions are K-continuous.
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