Scientific Issues
Jan Długosz University
in Częstochowa
Mathematics XXIII (2018)
57-64
DOI http://dx.doi.org/10.16926/m.2018.23.05

SOME REMARKS ABOUT K-CONTINUITY OF K-SUPERQUADRATIC MULTIFUNCTIONS

KATARZYNA TROCZKA-PAWELEC

Abstract

Let X=(X,+) be an arbitrary topological group. The set-valued function $F\colon X\to n(Y)$ is called K-superquadratic iff

$$F(x+y) + F(x-y) \subset 2F(x) + 2F(y) + K,$$

for all $x, y \in X$, where Y denotes a topological vector space and K is a cone.

In this paper the K-continuity problem of multifunctions of this kind will be considered with respect to K-boundedness. The case where $Y = \mathbb{R}^N$ will be considered separately.

1. Introduction

Let X = (X, +) be an arbitrary topological group. A real-valued function f is called superquadratic, if it fulfils inequality

(1)
$$2f(x) + 2f(y) \le f(x+y) + f(x-y), \quad x, y \in X.$$

If the sign " \leq " in (1) is replaced by " \geq ", then f is called subquadratic. The continuity problem of functions of this kind was considered in [2]. This problem was also considered in the class of set-valued functions. By the set-valued functions we understand functions of the type $F\colon X\to 2^Y$, where X and Y are given sets. Throughout this paper set-valued functions will be always denoted by capital letters. A set-valued function F is called superquadratic if it satisfies inclusion

(2)
$$2F(x) + 2F(y) \subset F(x+y) + F(x-y), \quad x, y \in X,$$

and subquadratic set-valued function, if it satisfies inclusion defined in this form

(3)
$$F(x+y) + F(x-y) \subset 2F(x) + 2F(y), \quad x, y \in X.$$

• Katarzyna Troczka-Pawelec — e-mail: k.troczka@ujd.edu.pl Jan Długosz University in Częstochowa. For single-valued real functions properties of subquadratic and superquadratic functions are quite analogous and, in view of the fact that if a function f is subquadratic, then the function -f is superquadratic and conversely, it is not necessary to investigate functions of these two kinds individually. In the case of set-valued functions the situation is different. Even if properties of subquadratic and superquadratic set-valued functions are similar, we have to proved them separately. If the sign C in the inclusions above is replaced by C in the C is called quadratic set-valued function. The class of quadratic set-valued functions is an important subclass of the class of subquadratic and superquadratic set-valued functions. Quadratic set-valued functions have already extensive bibliography (see W. Smajdor [5], D. Henney [1] and K. Nikodem [4]). The continuity problem of subquadratic and superquadratic set-valued functions was considered in [6] and [7].

Adding a cone K in the space of values of a set-valued function F lets us consider a K-superquadratic set-valued function , that is solution of the inclusion

(4)
$$F(x+y) + F(x-y) \subset 2F(x) + 2F(y) + K, \quad x, y \in X.$$

The concept of K-superquadraticity is related to real-valued superquadratic functions. Note, in the case when F is a single-valued real function and $K = [0, \infty)$, we obtain the standard definition of superquadratic functionals (1). Similarly, if a set-valued function F satisfies the following inclusion

(5)
$$2F(x) + 2F(y) \subset F(x+y) + F(x-y) + K, \quad x, y \in X$$

then it is called K-subquadratic. The K-continuity problem of multifunction of this kind was considered in [9]. In this paper we will consider the K-continuity problem for K-superquadratic set-valued functions. Likewise as in functional analysis we can look for connections between K-boundedness and K-semicontinuity of set-valued functions of this kind.

Assuming $K = \{0\}$ in (4) and (5) we obtain the inclusions (2) and (3). Let us start with the notations used in this paper. Let Y be a topological vector space. We consider the family n(Y) of all non-empty subsets of as a topological space with the Hausdorff topology. In this topology the set

$$N_W(A) := \{ B \in n(Y) : A \subset B + W, B \subset A + W \}$$

where W runs the base of neighbourhoods of zero in Y, form a base of neighbourhoods of a set $A \in n(Y)$. By cc(Y) we denote the family of all compact and convex members of n(Y). The term set-valued function will be abbreviated to the form s.v.f.

Now we present here some definitions for the sake of completeness. Recall that a set $K \subset Y$ is called a cone iff $K + K \subset K$ and $sK \subset K$ for all $s \in (0, \infty)$.

Definition 1. (cf. [3]) A cone K in a topological vector space Y is said to be a normal cone iff there exists a base \mathfrak{W} of zero in Y such that

$$W = (W + K) \cap (W - K)$$

for all $W \in \mathfrak{W}$.

Definition 2. (cf. [3]) An s.v.f. $F: X \to n(Y)$ is said to be K-upper semi-continuous (abbreviated K-u.s.c.) at $x_0 \in X$ iff for every neighbourhood V of zero in Y there exists a neighbourhood U of zero in X such that

$$F(x) \subset F(x_0) + V + K$$

for every $x \in x_0 + U$.

Definition 3. (cf. [3]) An s.v.f. $F: X \to n(Y)$ is said to be K-lower semi-continuous (abbreviated K-l.s.c.) at $x_0 \in X$ iff for every neighbourhood V of zero in Y there exists a neighbourhood U of zero in X such that

$$F(x_0) \subset F(x) + V + K$$

for every $x \in x_0 + U$.

Definition 4. (cf. [3]) An s.v.f. $F: X \to n(Y)$ is said to be K-continuous at $x_0 \in X$ iff it is both K-u.s.c. and K-l.s.c. at x_0 . It is said to be K-continuous iff it is K-continuous at each point of X.

Note that in the case where $K = \{0\}$ the K-continuity of F means its continuity with respect to the Hausdorff topology on n(Y).

In the proof of the main theorems we will use some known lemmas (see Lemma 1.1, Lemma 1.3, Lemma 1.6 and Lemma 1.9 in [3]). The first lemma says that for a convex subset A of an arbitrary real vector space Y the equality (s+t)A = sA + tA holds for every $s,t \geq 0$ or (s,t<0). The second lemma says that in a real vector space Y for two convex subsets A,B the set A+B is also convex. The next lemma says that if $A \subset Y$ is a closed set and $B \subset Y$ is a compact set, where Y denotes a real topological vector space, then the set A+B is closed. For any sets $A,B \subset Y$, where Y denotes the same space as above, the inclusion $\overline{A} + \overline{B} \subset \overline{A+B}$ holds and equality holds if and only if the set $\overline{A} + \overline{B}$ is closed.

Let us adopt the following three definitions which are natural extension of the concept of the boundedness for real-valued functions.

Definition 5. An s.v. f. $F: X \to n(Y)$ is said to be K-lower bounded on a set $A \subset X$ iff there exists a bounded set $B \subset Y$ such that $F(x) \subset B + K$ for all $x \in A$. An s.v. f. $F: X \to n(Y)$ is said to be K-lower bounded at a point $x \in X$ iff there exists a neighbourhood U_x of zero in X such that F is K-lower bounded on a set $x + U_x$

Definition 6. An s.v. f. $F: X \to n(Y)$ is said to be K-upper bounded on a set $A \subset X$ iff there exists a bounded set $B \subset Y$ such that $F(x) \subset B - K$ for all $x \in A$. An s.v. f. $F: X \to n(Y)$ is said to be K-upper bounded at a point $x \in X$ iff there exists a neighbourhood U_x of zero in X such that F is K-upper bounded on a set $x + U_x$

Definition 7. An s.v. function $F: X \to n(Y)$ is said to be locally K-lower (upper) bounded in X if for every $x \in X$ there exists a neighbourhood U_x of zero in X such that F is K-lower (upper) bounded on a set $x + U_x$. It is said to be locally K-bounded in X if it is both locally K-lower and locally K-upper bounded in X.

Definition 8. We say that 2-divisible topological group X has the property $(\frac{1}{2})$ iff for every neighbourhood V of zero there exists a neighbourhood W of zero such that $\frac{1}{2}W \subset W \subset V$.

For the K-superquadratic set-valued functions the following two theorems hold.

Theorem 1. (cf. [8]) Let X be a 2-divisible topological group with property $(\frac{1}{2})$, Y locally convex topological real vector space and $K \subset Y$ a closed normal cone. If a K-superquadratic s.v.f. $F: X \to cc(Y)$ is K-u.s.c. at zero, $F(0) = \{0\}$ and locally K- bounded in X, then it is K-u.s.c. in X.

Theorem 2. (cf. [10]) Let X be a 2-divisible topological group, Y locally convex topological real vector space and $K \subset Y$ a closed normal cone. If a K-superquadratic s.v.f. $F: X \to cc(Y)$ is K-u.s.c. at zero, $F(0) = \{0\}$ and locally K-bounded in X then it is K-l.s.c. in X.

Let us note, that Theorem 1 and Theorem 2, by Definition 4, yield directly the following main theorem for K-superquadratic multifunctions.

Theorem 3. Let X be a 2-divisible topological group with property $(\frac{1}{2})$, Y locally convex topological real vector space and $K \subset Y$ a closed normal cone. If a K-superquadratic s.v.f. $F: X \to cc(Y)$ is K-u.s.c. at zero, $F(0) = \{0\}$ and locally K- bounded in X, then it is K-continuous in X.

Let us introduce the following definitions.

Definition 9. An s.v. f. $F: X \to n(Y)$ is said to be weakly K-lower bounded on a set $A \subset X$ iff there exists a bounded set $B \subset Y$ such that $F(x) \cap (B+K) \neq \emptyset$ for all $x \in A$.

Definition 10. An s.v. f. $F: X \to n(Y)$ is said to be weakly K-upper bounded on a set $A \subset X$ iff there exists a bounded set $B \subset Y$ such that $F(x) \cap (B - K) \neq \emptyset$ for all $x \in A$.

Definition 11. An s.v. f. $F: X \to n(Y)$ is said to be locally weakly K-upper bounded in X iff for every $x \in X$ there exists a neighbourhood U_x of zero in X such that F is K-upper bounded on a set $x + U_x$.

Definition 12. An s.v. f. $F: X \to n(Y)$ is said to be locally weakly K-lower bounded in X iff for every $x \in X$ there exists a neighbourhood U_x of zero in X such that F is K-lower bounded on a set $x + U_x$.

Definition 13. An s.v. f. $F: X \to n(Y)$ is said to be locally weakly K-bounded in X iff for every $x \in X$ there exists a neighbourhood U_x of zero in X such that F is weakly K-lower and weakly K-upper bounded on a set $x + U_x$.

Clearly, if F is K-upper (K-lower) bounded on a set A, then it is weakly K-upper (K-lower) bounded on a set A. In the case of single-valued functions these definitions coincide.

For the K-superquadratic set-valued functions the following lemma holds.

Lemma 1. Let X be a 2-divisible topological group satisfying condition $\left(\frac{1}{2}\right)$, Y topological vector space and $K \subset Y$ a cone. Let $F \colon X \to B(Y)$ be a K-superquadratic s.v.f., such that $F(0) = \{0\}$ and $G \colon X \to n(Y)$ be an s.v.f. with

(6)
$$G(x) \subset F(x) + K$$

for all $x \in X$.

If F is K-lower bounded at zero and G is locally weakly K-upper bounded in X, then F is locally K-lower bounded in X.

Proof. Let $x \in X$. There exist a bounded set $B_1 \subset Y$ and a symmetric neighbourhood U_1 of zero in X such that

$$G(x-t) \cap (B_1-K) \neq \emptyset, \quad t \in U_1,$$

which implies that that for all $t \in U_1$ there exists $a \in G(x - t)$ and $a \in (B_1 - K)$. Consequently, we get

(7)
$$0 = a - a \in G(x - t) - B_1 + K$$

for all $t \in U_1$. Since F is K-lower bounded at zero, there exist a symmetric neighbourhood U_2 of zero in X and a bounded set $B_2 \subset Y$ such that

(8)
$$F(t) \subset B_2 + K, \quad t \in U_2.$$

Let \widetilde{U} be a symmetric neighbourhood of zero in X with $\frac{1}{2}\widetilde{U} \subset \widetilde{U} \subset U_1 \cap U_2$. Let $t \in \frac{1}{2}\widetilde{U}$. Using (6), (7) i (8), we obtain

$$F(x+t)+0 \subset F(x+t)+G(x-t)-B_1+K \subset F(x+t)+F(x-t)-B_1+K \subset$$

$$\subset 2F(x) + 2F(t) - B_1 + K \subset 2F(x) + 2B_2 - B_1 + K.$$

Define $\widetilde{B} := 2F(x) + 2B_2 - B_1$. Since F(x) is a bounded set, then the set \widetilde{B} is also bounded as the sum of bounded sets. Therefore

$$F(x+t) \subset \widetilde{B} + K, \quad t \in \frac{1}{2}\widetilde{U},$$

which means that F is locally K-lower bounded in X.

In the case of K-superquadratic multifunctions we require Y space to be locally bounded topological vector space. Then the following theorem holds.

Theorem 4. Let X be a 2-divisible topological group with property $(\frac{1}{2})$, Y locally convex topological vector space and $K \subset Y$ a closed normal cone. If a K-superquadratic s.v.f. $F: X \to cc(Y)$ is K-u.s.c. at zero, $F(0) = \{0\}$ and locally K- upper bounded in X, then it is K-continuous in X.

Proof. Let W be a bounded neighbourhood of zero in Y. Since F is K-u.s.c. at zero and $F(0) = \{0\}$, then there exists a neighbourhood U of zero in X such that

$$F(t) \subset V + K$$

for all $t \in U$, which means that F is K-lower bounded at zero. The condition of locally K-upper boundedness in X implies F is locally K-weakly upper bounded in X. By Lemma 1 (G = F) F is locally K-lower bounded in X. Consequently by Theorem 3 F is K-continuous at each point of X. \square

2. The case
$$n(\mathbb{R}^N)$$

Now we consider the case where the space of values is $n(\mathbb{R}^N)$. In our next proof, we will use known following lemma.

Lemma 2. (cf. [9]) Let Y be a topological vector space and K be a cone in Y. Let A, B, C be non-empty subsets of Y such that $A + C \subset B + C + K$. If B is convex and C is bounded then $A \subset \overline{B+K}$.

For the K-superquadratic set-valued functions the following lemma holds.

Lemma 3. Let X be a topological group and K a closed cone in \mathbb{R}^N . Let $F: X \to cc(\mathbb{R}^N)$ be a K-superquadratic s.v.f. with $F(0) = \{0\}$. If F is K-l.s.c. at some point $x_0 \in X$, then it is K-l.s.c. at zero.

Proof. Let W be a neighbourhood of zero in Y. There exists a convex neighbourhood V of zero in Y such that the set \overline{V} is compact with $3\overline{V} \subset W$. Since F is K-1.s.c. at $x_0 \in X$ then there exists a symmetric neighbourhood U of zero in X such that

(9)
$$F(x_0) \subset F(x_0 + t) + V + K$$
,

(10)
$$F(x_0) \subset F(x_0 - t) + V + K,$$

for all $t \in U$.

Let $t \in U$. By convexity of the set $F(x_0)$ and by (9) i (10), we obtain

$$2F(x_0) \subset F(x_0+t) + F(x_0-t) + 2V + K \subset 2F(x_0) + 2F(t) + 2V + K.$$

Then

(11)
$$F(x_0) + \{0\} \subset F(x_o) + F(t) + \overline{V} + K \quad t \in U.$$

Since $F(x_0)$ is a bounded set and $F(t) + \overline{V}$ is a convex set, then by Lemma 2, we have

$$\{0\} \subset \overline{\overline{V} + F(t) + K}$$

for all $t \in U$. Note that the set $\overline{V} + F(t) + K$ is closed as a sum of compact and closed set. Consequently, by condition $F(0) = \{0\}$, we obtain

$$F(0) \subset \overline{V} + F(t) + K \subset F(t) + W + K$$

for all $t \in U$, which means F is K-l.s.c. at zero.

This article is the introduction to the discussion on the K-continuity problem for K-superquadratic set-valued functions. In the theory of K-subquadratic and K-superquadratic set-valued functions an important role is played by theorems giving possibly weak conditions under which such multifunctions are K-continuous.

References

- [1] Henney D., Quadratic set-valued functions. Ark. Mat. 4, 1962
- [2] Kominek Z., Troczka-Pawelec K., Continuity of real valued subquadratic functions.
 Commentationes Mathematicae, Vol. 51, No. 1 (2011), 71-75
- [3] Nikodem K., K-convex and K-concave set-valued functions. Publ. Math. Debrecen 30, 1983
- [4] Nikodem K., On quadratic set-valued functions. Zeszyty Naukowe Politechniki Łódzkiej, nr 559, Łódź 1989
- [5] Smajdor W., Subadditive and subquadratic set-valued functions. Prace Naukowe Uniwersytetu Ślaskiego w Katowicach, nr 889, Katowice 1987
- [6] Troczka-Pawelec K. Continuity of superquadrqtic set-valued functions. Scientific Issues Jan Długosz University in Częstochowa, Mathematics XVII, 2012
- [7] Troczka-Pawelec K. Continuity of subquadrqtic set-valued functions. Demonstratio Mathematica, vol. XLV, no 4, 2012, 939-946
- [8] Troczka-Pawelec K. K-continuity problem of K-superquadratic set-valued functions. Scientific Issues Jan Długosz University in Częstochowa, Mathematics XIX, 2014
- [9] Troczka-Pawelec K. K-continuity of K-subquadratic set-valued functions. Scientific Issues Jan Długosz University in Częstochowa, Mathematics XIX, 2014
- [10] Troczka-Pawelec K. On K-superquadratic set-valued functions. Journal of Applied Mathematics and Computational Mechanics, Volume 14, Issue 1, 2015

Received: November 2018

Katarzyna Troczka-Pawelec
Jan Długosz University in Częstochowa,
Institute of Mathematics and Computer Science,
Al. Armii Krajowej 13/15, 42-200 Częstochowa, Poland
Email address: k.troczka@ujd.edu.pl