PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

LES numerical study on in–injector cavitating flow

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper a computational study on hexane flow in a fuel injector is presented. Large Eddy Simulation (LES) was used to capture the turbulent patterns present in the flow. The main aim was to investigate the cavitation phenomenon and its interaction with turbulence as well as the influence of injection pressure and backpressure on fuel mass flow and flow conditions. Analysis of the approach to define the outlet boundary conditions in terms of convergence time and fluid mass outflow oscillations formed a crucial part of the study. Numerical simulations were performed with AVL Fire CFD (Computational Fluid Dynamics) software. The Euler-Euler approach and multifluid model for multiphase flow modelling were applied. Injector needle movement was included in the simulation. Results show that the additional volumes attached to the nozzle outlets improved the convergence of the simulations and reduced mass outflow oscillations. Fuel mass flow at the outlets was dependent on inlet pressure, position of the needle and backpressure, while the influence of backpressure on fuel mass flow was negligible. The presence of the vapor phase at the exit of the nozzles did not affect average fuel mass flow. All the simulations showed interaction between the gaseous phase distribution and the turbulence of the flow.
Rocznik
Strony
52--60
Opis fizyczny
Bibliogr. 32 poz., rys., wykr.
Twórcy
autor
  • Institute of Heat Engineering, Warsaw University of Technology, Nowowiejska Street 21/25, 00-665 Warsaw, Poland
  • Institute of Heat Engineering, Warsaw University of Technology, Nowowiejska Street 21/25, 00-665 Warsaw, Poland
  • Institute of Heat Engineering, Warsaw University of Technology, Nowowiejska Street 21/25, 00-665 Warsaw, Poland
Bibliografia
  • [1] A. Sou, S. Hosokawa, A. Tomiyama, Effects of cavitation in a nozzle on liquid jet atomization, Int. J. Heat Mass Transfer 50 (2007) 3575–3582.
  • [2] F. Payri, V. Bermudez, R. Payri, F. Salvador, The influence of cavitation on the internal flow and the spray characteristics in diesel injection nozzles, Fuel 83 (2004) 419–431.
  • [3] R. Payri, J. Garcia, F. Salvador, J. Gimeno, Using spray momentum flux measurements to understand the influence of diesel nozzle geometry on spray characteristics, Fuel 84 (2005) 551–561.
  • [4] F. Payri, R. Payri, F. Salvador, J. Martínez-López, A contribution to the understanding of cavitation effects in diesel injector nozzles through a combined experimental and computational investigation, Comput Fluids 58 (2012) 88–101.
  • [5] J. Javier López, F. Salvador, O. de la Garza, J. Arrègle, A comprehensive study on the effect of cavitation on injection velocity in diesel nozzles, Energy Conversion and Management 64 (2012) 415–423.
  • [6] F. Salvador, J. Martínez-López, J.-V. Romero, M.-D. Roselló, Computational study of the cavitation phenomenon and its interaction with the turbulence developed in diesel injector nozzles by large eddy simulation (les), Math Comput Modell 57 (2013) 1656–1662.
  • [7] R. Payri, B. Tormos, J. Gimeno, G. Bracho, The potential of large eddy simulation (les) code for the modeling of flow in diesel injectors, Math Comput Modell 2010 (2010) 1151–1160.
  • [8] R. Payri, B. Tormos, J. Gimeno, G. Bracho, Large eddy simulation for high pressure flows: Model extension for compressible liquids, Math Comput Modell 54 (2011) 1725–1731.
  • [9] B. Ji, X. Luo, R. Arndt, X. Peng, Y. Wu, Large eddy simulation and theoretical investigations of the transient cavitating vortical flow structure around a naca66 hydrofoil, Int J Multiphase Flow 68 (2015) 121–134.
  • [10] S. Jollet, T. Willeke, F. Dinkelacker, Comparison of various models for transient nozzle flow simulations including time-resolved needle lift, in: 12th Trienn. Int. Conf. Liq. At. Spray Syst., vol. i, Heidelberg, Germany, 2012, pp. 1–8.
  • [11] E. Goncalves, R. Patella, Numerical simulation of cavitating flows with homogeneous models, Comput Fluids 38 (2009) 1682–1696.
  • [12] P. Sagaut, Large Eddy Simulation for Incompressible Flows, 3rd Edition, Springer, 2006.
  • [13] L. Berselli, T. Iliescu,W. Layton, Mathematics of Large Eddy Simulation of Turbulent Flows, Springer, 2005.
  • [14] T. Iliescu, Large eddy simulation for turbulent flows, Ph.D. thesis (2000).
  • [15] U. Piomelli, Large-eddy simulation: achievements and challenges, Prog Aerosp Sci 35 (1999) 335–362.
  • [16] J. McDonough, ntroductory lectures on turbulence physics, mathematics and modeling, Departments of Mechanical Engineering and Mathematics, University of Kentucky (2004).
  • [17] P. Jaworski, M. ˙ Zbikowski, Modele les w badaniach numerycznych procesów spalania w silnikach tłokowych - przegla˛d literatury (in polish), Arch Comb 11 (2011) 111–144.
  • [18] J. Smagorinsky, General circulation experiments with the primitive equations, Mon Weather Rev 91 (1963) 99–164.
  • [19] D. Wilcox, Turbulence modeling for CFD, DCW Industries, Inc, 1998.
  • [20] A. L. GmbH, Eulerian multiphase. avl fire softw doc. (2013).
  • [21] H. El-Din, Y.-S. Zhang, M. Elkelawy, A computational study of cavitation model validity using a new quantitative criterion, Chinese Phys Lett 29.
  • [22] C. Brennen, Cavitation and bubble dynamics, Oxford University Press, 1995.
  • [23] N. C.WebBook, [Online] Available: http://webbook.nist.gov/chemistry/. [Accessed: 06-Jun-2013].
  • [24] F. Salvador, J.-V. Romero, M.-D. Roselló, J. Martínez-López, Validation of a code for modeling cavitation phenomena in diesel injector nozzles, Math Comput Model 52 (2010) 1123–1132.
  • [25] F. Salvador, J. Martínez-López, Study of the influence of the needle lift on the internal flow and cavitation phenomenon in diesel injector nozzles by cfd using rans methods, Energy Convers Manag 66 (2013) 246–256.
  • [26] F. Salvador, J. Martínez-López, J.-V. Romero, M.-D. Roselló, Influence of biofuels on the internal flow in diesel injector nozzles, Math Comput Model 54 (2011) 1699–1705.
  • [27] X. Wang, K. Li, W. Su, Experimental and numerical investigations on internal flow characteristics of diesel nozzle under real fuel injection conditions, Exp Therm Fluid Sci 42 (2012) 204–211.
  • [28] Z. He, W. Zhong, Q.Wang, Z. Jiang, Y. Fu, An investigation of transient nature of the cavitating flow in injector nozzles, Appl Therm Eng.
  • [29] Z. He, W. Zhong, Q. Wang, Z. Jiang, Z. Shao, Effect of nozzle geometrical and dynamic factors on cavitating and turbulent flow in a diesel multi-hole injector nozzle, Int J Therm Sci 70 (2013) 132–143.
  • [30] M. Jia, M. Xie, H. Liu, W.-H. Lam, T. Wang, Numerical simulation of cavitation in the conical-spray nozzle for diesel premixed charge compression ignition engines, Fuel 90 (2011) 2652–2661.
  • [31] S. Gopalakrishnan, D. Schmidt, A computational study of flashing flow in fuel injector nozzles, SAE Int J Engines (2009) 160–170.
  • [32] Y. Melsem, S. Honnet,W. Schwarz, J. Reveillon, F. Demoulin, Modeling of cavitating flows in diesel injector nozzles to consider its impact on the atomization, in: 24th Eur. Conf. Liq. At. Spray Syst., 2011, estoril, Portugal.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4455e53c-a116-40d3-8c3a-b1b1ecf4d26f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.