PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modeling of Stiff Interfaces : from Statics to Dynamics

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, some results on the asymptotic behavior of stiff thin interfaces in elasto-statics are recalled. A specific study of stiff interfaces in elastodynamics is presented and a numerical procedure is given.
Rocznik
Strony
37--50
Opis fizyczny
Bibliogr. 21 poz.
Twórcy
autor
  • Laboratoire Amienois de Mathematique Fondamentale et Appliquee UMR 7352, University of Picardie and CNRS, Prance
autor
  • Laboratoire de Mecanique et d’Acoustique UPR7051, Aix-Marseille University, CNRS and Centrale Marseille, France
autor
  • Dipartimento di Ingegneria, Universita di Ferrara, Italy
Bibliografia
  • 1. Abdelmoula, R., Coutris, M., Marigo, J.J., 1998, Comportement asymptotique d’une interface mince, Compte Rendu Acad ́emie des Sciences IIB, 326, 237–242
  • 2. Baiocchi, C., Brezzi, F., Marini, L.D., 1992, Stabilization of Galerkin methods and applications to domain decomposition, in: Future Tendencies in Computer Sciences, Control and Applied Mathematics, Lecture Notes in Compututer Sciences, 653, A. Bensoussan and J.-P. Verjus (eds.), Springer, 354-355.
  • 3. Benveniste, Y., 2006, An O(hN) interface model of a three-dimensional curved interphase in conduction phenomena, Proceeding of the Royal Society A, 462, 1593-1617.
  • 4. Dumont, S., Goubet, O., Ha-Duong, T., Villon, P., 2006, Meshfree methods and boundary conditions, International Journal of Numerical Methods in Engineering, 67, 989-1011.
  • 5. Dumont, S., Lebon, F., Rizzoni, RM 2013, An asymptotic approach to the adhesion of thin stiff films, Mechanics Research Communications (to appear)
  • 6. Klarbring, A., 1991, Derivation of the adhesively bonded joints by the asymptotic expansion method, International Journal of Engineering Science, 29, 493-512.
  • 7. Krasuki, F., Lenci, S., 2000, Yield design of bonded joints, European Journal of Mechanics A-Solid, 19, 649-667.
  • 8. Kumar, M., Mittal, P.A., 2011, Methods for solving singular perturbation problems arising in science and engineering, Math. Comput. Model. 54, 556-575.
  • 9. Lebon, F., Ould-Khaoua, A., Licht, C., 1997, Numercal study of soft adhesively bonded joints in finite elasticity, Computational and Mechanics, 21, 134-140.
  • 10. Lebon, F., Rizzoni, R., Ronel-Idrissi, S., 2004, Analysis of non-linear soft thin interfaces, Compututers and Structures, 82, 1929-1933.
  • 11. Lebon, F., Rizzoni, R., 2008, Asymptotic study study of a soft thin layer: the non convex case, Mechanics of Advanced Materials and Structures 15, 12-20.
  • 12. Lebon, F., Rizzoni, R., 2010, Asymptotic analysis of thin interface: The case involving similar rigidity, International Journal of Engineering Science, 48, 473-486.
  • 13. Lebon, F., Rizzoni, R., 2011, Asymptotic behavior of a hard thin linear interphase: An energy approach, International Journal of Solid, and Structures, 48, 441-449.
  • 14. Lebon, F., Rizzoni, R., Ronel-Idrissi, S. 2007, First-Order Numerical Analysis of Linear Thin Layer, Journal of Applied Mechanics-Transaction of the ASME, 74, 824-828.
  • 15. Lebon, F., Zaittouni, F., 2010, Asymptotic modelling of interface taking into account contact conditions: Asymptotic expansions and numerical implementation International Journal of Engineering Science, 48, 111-127.
  • 16. Licht, C., Leger A., Lebon, F., 2008, Propagation in an elastic body with a thin adhesive layer, Springer Series on Wave Phenomena, 99-110, Springer.
  • 17. Licht, C., Michaille, G., 1997, A modeling of elastic adhesieve bonded joints, Advances in Mathematical Sciences and Applications, 7, 711-740.
  • 18. Nitsche, J., 1974, Convergence of nonconforming methods, Proceedings of a Symposium Conducted by the Mathematics Research Center, University of Wisconsin, Madison. Mathematical Aspects of Finite Elements in Partial Differential Equations. Academic Press: New York, 15-53.
  • 19. Rizzoni, R., Lebon, F., 2012, Asymptotic analysis of an elastic thin interphase with mismatch strain, European Journal of Mechanics - A/Solid, 36, 1-8.
  • 20. Stenberg, R., 1995, On some techniques for approximating boundary conditions in the finite element method, Journal of Computational and Applied Mathematics 63, 139-148
  • 21. Zaittouni, F., Lebon, F., Licht, C., 2002, Etude th́eorique et nuḿerique du comportement d’un assemblage de plaques, Comptes Rendus a l’Acadmie des Sciences II, 330, 359-364.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-44549ebd-a573-4e30-b0c4-983e4dbad00b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.