PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Antiadherent and antibacterial properties of TiO2-coated and TiO2:Ag-coated stainless steel orthodontic wires against S. mutans bacteria

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Conventional orthodontic treatment with stainless steel orthodontic wires may be detrimental to oral health, as it contributes to demineralized lesions and increases adhesion and bacterial biofilm formation, which contributes to cavity development. An alternative that has been investigated to reduce the side effects of orthodontic treatment is the use of coating materials with antimicrobial nanoparticles. This study aims to evaluate the antiadherent and antibacterial properties of TiO2-coated and TiO2:Ag-coated stainless steel orthodontic wires against S. mutans bacteria. Methods: In the sol–gel method, TiO2:Ag thin films were deposited on stainless steel orthodontic wires. Coated archwires were analyzed for their antibacterial and antiadherent properties. The evaluation of Streptococcus mutans adhesion to the orthodontic wires’ surface was conducted according to the type of coating used, biofilm formation assay, and measurement of the pH of the bacterial community. Results: In the microbiological test, the TiO2:Ag coatings revealed a statistically significant difference in terms of microbial adhesion and biofilm formation by Streptococcus mutans. The TiO2:Ag coating on stainless steel wire increased pH levels in the saliva environment. Conclusions: It can be concluded that antimicrobial orthodontic wires coated with silver- TiO2 nanoparticles using the sol–gel thin film are a promising choice for improving orthodontic treatment.
Rocznik
Strony
107--118
Opis fizyczny
Bibliogr. 39 poz., rys., tab., wykr.
Twórcy
  • Department of Mechanics, Materials and Biomedical Engineering, Faculty of Mechanical Engineering, Wrocław University of Science and Technology, Wrocław, Poland.
  • Department of Dentofacial Orthopedics and Orthodontics, Wroclaw Medical University, Wrocław, Poland.
autor
  • Department of Mechanics, Materials and Biomedical Engineering, Faculty of Mechanical Engineering, Wrocław University of Science and Technology, Wrocław, Poland.
  • Department of Dentofacial Orthopedics and Orthodontics, Wroclaw Medical University, Wrocław, Poland.
  • Department of Microbiology, Wroclaw Medical University, Wrocław, Poland.
  • Department of Microbiology, Wroclaw Medical University, Wrocław, Poland.
autor
  • Department of Dentofacial Orthopedics and Orthodontics, Wroclaw Medical University, Wrocław, Poland.
autor
  • Department of Mechanics, Materials and Biomedical Engineering, Faculty of Mechanical Engineering, Wrocław University of Science and Technology, Wrocław, Poland.
autor
  • Department of Mechanics, Materials and Biomedical Engineering, Faculty of Mechanical Engineering, Wrocław University of Science and Technology, Wrocław, Poland.
  • Department of Integrated Dentistry, Wroclaw Medical University, Wrocław, Poland.
  • Academic Dental Clinic, Wroclaw Medical University, Wroclaw, Poland.
Bibliografia
  • [1] AHN S.J., WEN Z.T., BURNE R.A., Effects of Oxygen on Virulence Traits of Streptococcus Mutans, J. Bacteriol., 2007, 189, 8519–8527, DOI: 10.1128/JB.01180-07.
  • [2] AMINI F., BAHADOR A., KIAEE B.K.G. The Effect of the Titanium Nitride Coating on Bacterial Adhesion on Orthodontic Stainless Steel Wires: In Vivo Study, An Open Access Int. J., 2017, DOI: http://dx.doi.org/10.21786/bbrc/10.1/5.
  • [3] ARANGO-SANTANDER S., PELAEZ-VARGAS A., FREITAS S.C., GARCÍA C., A Novel Approach to Create an Antibacterial Surface Using Titanium Dioxide and a Combination of Dip-Pen Nanolithography and Soft Lithography, Sci. Reports, 2018, 81, 8, 1–10, DOI: 10.1038/s41598-018-34198-w.
  • [4] ARKUSZ K., PARADOWSKA E., NYCZ M., MAZUREK-POPCZYK J., BALDY-CHUDZIK K., Evaluation of the Antibacterial Activity of Ag- and Au-Nanoparticles Loaded TiO_ Nanotubes, J. Biomed. Nanotechnol., 2020, 16, 1416–1425, DOI: 10.1166/jbn.2020.2979.
  • [5] ÅRTUN J., BROBAKKEN B., Prevalence of Carious White Spots after Orthodontic Treatment with Multibonded Appliances, Eur. J. Orthod., 1986, 8, 229–234.
  • [6] BĄCELA J., ŁABOWSKA M.B., DETYNA J., ZIĘTY A., MICHALAK I., Functional Coatings for Orthodontic Archwires – A Review, Mater. (Basel, Switzerland) 2020, 13, DOI: 10.3390/MA13153257.
  • [7] BORZABADI-FARAHANI A., BORZABADI EBRAHIM L.E. Nanoparticles in Orthodontics, a Review of Antimicrobial and Anti-Caries Applications, Acta Odontol. Scand., 2014, 72, 413–417, DOI: 10.3109/00016357.2013.859728.
  • [8] CAO S., WANG Y., CAO L., WANG Y., LIN B., LAN W., CAO B., Preparation and Antimicrobial Assay of Ceramic Brackets Coated with TiO(2) Thin Films, Korean J. Orthod., 2016, 46, 146–154, DOI: 10.4041/kjod.2016.46.3.146.
  • [9] CHHATTANI S., SHETTY P.C., In Vitro Assessment of Photocatalytic Titanium Oxide Surface-Modified Stainless Steel and Nickel Titanium Orthodontic Wires for Its Antiadherent and Antibacterial Properties against Streptococcus Mutans, J. Indian Orthod. Soc., 2014, 82–87.
  • [10] CHUN M.J., SHIM E., KHO E.H., PARK K.J., JUNG J., KIM J.M., KIM B., LEE K.H., CHO D.L., BAI D.H. et al., Surface Modification of Orthodontic Wires with Photocatalytic Titanium Oxide for Its Antiadherent and Antibacterial Properties, Angle Orthod., 2007, 77, 483–488, DOI: 10.2319/0003-3219(2007)077[0483:SMOOWW]2.0.CO;2.
  • [11] FALTERMEIER A., BÜRGERS R., ROSENTRITT M., Bacterial Adhesion of Streptococcus Mutans to Esthetic Bracket Materials, Am. J. Orthod. Dentofacial Orthop., 2008, 133, DOI: 10.1016/J.AJODO.2007.03.024.
  • [12] FATANI E.J., ALMUTAIRI H.H., ALHARBI A.O., ALNAKHLI Y.O., DIVAKAR D.D., MUZAHEED, ALKHERAIF A.A., KHAN A.A., In Vitro Assessment of Stainless Steel Orthodontic Brackets Coated with Titanium Oxide Mixed Ag for Anti-Adherent and Antibacterial Properties against Streptococcus Mutans and Porphyromonas Gingivalis, Microb. Pathog., 2017, 112, 190–194, DOI: 10.1016/J.MICPATH.2017.09.052.
  • [13] GHASEMI T., ARASH V., RABIEE S.M., RAJABNIA R., POURZARE A., RAKHSHAN V., Antimicrobial Effect, Frictional Resistance, and Surface Roughness of Stainless Steel Orthodontic Brackets Coated with Nanofilms of Silver and Titanium Oxide: A Preliminary Study, Microsc. Res. Tech., 2017, 80, 599–607, DOI: 10.1002/jemt.22835. 118 J.J. BĄCELA et al.
  • [14] GORELICK L., GEIGER A.M., GWINNETT A.J., Incidence of White Spot Formation after Bonding and Banding, Am. J. Orthod., 1982, 81, 93–98, DOI: 10.1016/0002-9416(82)90032-X.
  • [15] HADLER-OLSEN S., SANDVIK K., EL-AGROUDI M.A., OGAARD B., The Incidence of Caries and White Spot Lesions in Orthodontically Treated Adolescents with a Comprehensive Caries Prophylactic Regimen – a Prospective Study, Eur. J. Orthod., 2012, 34, 633–639, DOI: 10.1093/EJO/CJR068.
  • [16] HERNÁNDEZ-SIERRA J., RUIZ F., PENA D.C., MARTÍNEZ-GUTIÉRREZ F., MARTÍNEZ A.E., GUILLÉN ADE J. et al., The Antimicrobial Sensitivity of Streptococcus Mutans to Nanoparticles of Silver, Zinc Oxide, and Gold, Nanomedicine 2008, 4, 237–240.
  • [17] HERNÁNDEZ-VÁZQUEZ R.A., MARQUET-RIVERA R.A., MASTACHE-MIRANDA O.A., VÁZQUEZ-LÓPEZ A.J., CRUZ-LÓPEZ S., VÁZQUEZ-FEIJOO J.A., Comparative Numerical Analysis between Two Types of Orthodontic Wire for the Lingual Technique, Using the Finite Element Method, Appl. Bionics Biomech. 2021, DOI: 10.1155/2021/6658039.
  • [18] KHOROUSHI M., KACHUIE M., Prevention and Treatment of White Spot Lesions in Orthodontic Patients, Contemp. Clin. Dent., 2017, 8, 11–19, DOI: 10.4103/CCD.CCD_216_17.
  • [19] KIELAN-GRABOWSKA Z., BĄCELA J., ZIĘTY A., SEREMAK W., GAWLIK-MAJ M., KAWALA B., BORAK B., DETYNA J., SARUL M., Improvement of Properties of Stainless Steel Orthodontic Archwire Using TiO2:Ag Coating, Symmetry 2021, Vol. 13, Page 1734, 2021, 13, 1734, DOI: 10.3390/SYM13091734.
  • [20] KIM I., PARK H., KIM Y., KIM K., KWON T., Comparative Short-Term in Vitro Analysis of Mutans Streptococci Adhesion on Esthetic, Nickel-Titanium and Stainless-Steel Arch Wires, Angle Orthod. 2014, 84, 680–686.
  • [21] LI J., LIU X., QIAO Y., ZHU H.D.C., Antimicrobial Activity and Cytocompatibility of Ag Plasma-Modified Hierarchical TiO2 Film on Titani-Um Surface, Colloids Surf B Biointerfaces, 2014, 113, 134–145, DOI: 10.1016/j.colsurfb.2013.08.030.
  • [22] LIN F., REN M., YAO L., HE Y., GUO J., YE Q., Psychosocial Impact of Dental Esthetics Regulates Motivation to Seek Orthodontic Treatment, Am. J. Orthod. Dentofac. Orthop., 2016, 150, 476–482, DOI: 10.1016/J.AJODO.2016.02.024.
  • [23] MANI S., MANICKAM S., MUTHUSAMY V., THANGARAJ R., Antimicrobial Activity and Photocatalytic Degradation Properties of Zinc Sulfide Nanoparticles Synthesized by Using Plant Extracts, J. Nanostructures 2018, 8, 107–118, DOI: 10.22052/JNS.2018.02.001.
  • [24] MARSH P., MARTIN M., Oral Microbiology, 2009, ISBN 9780702040153.
  • [25] MCDONNELL G., RUSSELL A.D., Antiseptics and Disinfectants: Activity, Action, and Resistance, Clin. Microbiol. Rev., 1999, 12, 147–179, DOI: 10.1128/cmr.12.1.147.
  • [26] METIN-GÜRSOY G., TANER L., AKCA G., Nanosilver Coated Orthodontic Brackets: In Vivo Antibacterial Properties and Ion Release, Eur. J. Orthod., 2017, 39 (1), 9–16.
  • [27] METIN-GÜRSOY G., TANER L., AKCA G., Nanosilver Coated Orthodontic Brackets: In Vivo Antibacterial Properties and Ion Release, Eur. J. Orthod., 2017, 39, 9–16, DOI: 10.1093/EJO/CJV097.
  • [28] MHASKE A.R., SHETTY P.C., BHAT N.S., RAMACHANDRA C.S., LAXMIKANTH S.M., NAGARAHALLI K., TEKALE P.D., Antiadherent and Antibacterial Properties of Stainless Steel and NiTi Orthodontic Wires Coated with Silver against Lactobacillus Acidophilus – an in Vitro Study, Prog. Orthod., 2015, 16, 0–5, DOI: 10.1186/s40510-015-0110-0.
  • [29] MOLLABASHI V., FARMANY A., ALIKHANI M.Y., SATTARI M., SOLTANIAN A.R., KAHVAND P., BANISAFAR Z., Effects of TiO2-Coated Stainless Steel Orthodontic Wires on Streptococcus Mutans Bacteria: A Clinical Study, Int. J. Nanomedicine, 2020, 15, 8759–8766, DOI: 10.2147/IJN.S258440.
  • [30] MORITA Y., IMAI S., HANYUDA A., MATIN K., HANADA N., NAKAMURA Y., Effect of Silver Ion Coating of Fixed Orthodontic Retainers on the Growth of Oral Pathogenic Bacteria, Dent. Mater. J. 2014, 33, 268–274, DOI: 10.4012/DMJ.2013-216.
  • [31] OLIVEIRA D.C., THOMSON J.J., ALHABEIL J.A., TOMA J.M., PLECHA S.C., PACHECO R.R., CUEVAS-SUÁREZ C.E., PIVA E., LUND R.G., In Vitro Streptococcus Mutans Adhesion and Biofilm Formation on Different Esthetic Orthodontic Archwires, Angle Orthod. 2021, 91, 786–793, DOI: 10.2319/121220-998.1.
  • [32] PASICH E., WALCZEWSKA M., PASICH A.M.J., Mechanism and Risk Factors of Oral Biofilm Formation, Adv. Hyg. Exp. Med. 2013, 736–741, DOI: 10.5604/17322693.1061393.
  • [33] PRATTEN W., BARNETT W., In Vitro Studies of the Effect of Antiseptic-Containing Mouthwashes on the Formation and Viability of Streptococcus Sanguis Biofilms, J. Appl. Microbiol. 2002, 84, 1149–1155, DOI: https://doi.org/10.1046/j.1365-2672.1998.00462.x.
  • [34] SARUL M., ANTOSZEWSKA-SMITH J., PARK H.S., Self-Perception of Smile Attractiveness as a Reliable Predictor of Increased Patient Compliance with an Orthodontist, Adv. Clin. Exp. Med. 2019, 28, 1633–1638, DOI: 10.17219/ACEM/110320.
  • [35] SARUL M., KAWALA B., KAWALA M., ANTOSZEWSKA-SMITH J., Do the NiTi Low and Constant Force Levels Remain Stable in Vivo?, Eur. J. Orthod. 2015, 37, 656–664, DOI: 10.1093/EJO/CJU105.
  • [36] SARUL M., RUTKOWSKA-GORCZYCA M., DETYNA J., ZI_TY A., KAWALA M., ANTOSZEWSKA-SMITH J., Do Mechanical and Physicochemical Properties of Orthodontic NiTi Wires Remain Stable In Vivo?, Biomed Res. Int. 2016, 2016, DOI: 10.1155/2016/5268629.
  • [37] SHAH A.G., SHETTY P.C., RAMACHANDRA C.S., BHAT N.S., LAXMIKANTH S.M., In Vitro Assessment of Photocatalytic Titanium Oxide Surface Modified Stainless Steel Orthodontic Brackets for Antiadherent and Antibacterial Properties against Lactobacillus Acidophilus, Angle Orthod. 2011, 81, 1028–1035, DOI: 10.2319/021111-101.1.
  • [38] STOYANOVA-IVANOVA A., CHERNEVA S., PETRUNOV V., PETROVA V., ILIEVSKA I., MIKLI V., IANKOV R., Investigation of Mechanical and Physicochemical Properties of Clinically Retrieved Titanium-Niobium Orthodontic Archwires, Acta Bioeng. Biomech. 2020, Vol. 22, DOI: 10.37190/ABB-01486-2019-03.
  • [39] VISAI L., DE NARDO L., PUNTA C., MELONE L., CIGADA A., IMBRIANI M., ARCIOLA C.R., Titanium Oxide Antibacterial Surfaces in Biomedical Devices, Int. J. Artif. Organs, 2011, 34, 929–946, DOI: 10.5301/IJAO.5000050.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-444da85e-2c65-47ae-8f90-fb5d69392733
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.