PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Influence of Multiple Cleaning on the Detection Capabilities of ISFET Structures

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Internet of Vehicles (IoVs) has become a vital research area in order to enhance passenger and road safety, increasing traffic efficiency and enhanced reliable connectivity. In this regard, for monitoring and controlling the communication between IoVs, routing protocols are deployed. Frequent changes that occur in the topology often leads to major challenges in IoVs, such as dynamic topology changes, shortest routing paths and also scalability. One of the best solutions for such challenges is “clustering”. This study focuses on IoVs’ stability and to create an efficient routing protocol in dynamic environment. In this context, we proposed a novel algorithm called Cluster-based enhanced AODV for IoVs (AODV-CD) to achieve stable and efficient clustering for simplifying routing and ensuring quality of service (QoS). Our proposed protocol enhances the overall network throughput and delivery ratio, with less routing load and less delay compared to AODV. Thus, extensive simulations are carried out in SUMO and NS2 for evaluating the efficiency of the AODV-CD that is superior to the classic AODV and other recent modified AODV algorithms.
Słowa kluczowe
Rocznik
Strony
23--28
Opis fizyczny
Bibliogr. 17 poz., fot., schem., wykr.
Twórcy
  • Warsaw University of Technology, Institute of Microelectronics and Optoelectronics, Warsaw, Poland
autor
  • Warsaw University of Technology, Institute of Microelectronics and Optoelectronics, Warsaw, Poland
  • Warsaw University of Life Sciences, Warsaw, Poland
  • Warsaw University of Life Sciences, Warsaw, Poland
  • Warsaw University of Life Sciences, Warsaw, Poland
autor
  • Warsaw University of Technology, Institute of Microelectronics and Optoelectronics, Warsaw, Poland
Bibliografia
  • [1] Poghossian A., Schöning M. J., Schroth P., Simonis A., Lüth H., "An ISFET-based penicillin sensor with high sensitivity, low detection limit and long lifetime," Sensors and Actuators B: Chemical 76, 519-526 (2001).
  • [2] Abramova N., Ipatov A., Levichev S., Bratov A., "Integrated multi-sensor chip with photocured polymer membranes containing copolymerised plasticizer for direct pH, potassium, sodium and chloride ions determination in blood serum," Talanta 79, 984–989 (2009).
  • [3] Fang I-Ju Trewyn, B. G., "Chapter three - Application of Mesoporous Silica Nanoparticles in Intracellular Delivery of Molecules and Proteins," Methods in Enzymology 508, 41-59 (2012).
  • [4] Pfeifer L., Zabarylo U., Stankovic G., Bensmann N., Minet O., "Vitality of the MeWo melanoma cell line during intense nanosecond-pulsed NIR laser radiation," Laser Phys. Lett. 11 (2014).
  • [5] Lei, K. F., "Review on impedance detection of cellular responses in micro/nano environment," Micromachines 5, 1-12 (2014).
  • [6] Arafa H., Obahiagbon U., Kullman D., Domínguez F. J., Magee A., Christen J. B., "Characterization and application of a discrete quartz extended-gate ISFET for the assessment of tumor cell viability," International Conference on Electrical. In Proceedings of the Electronics and System Engineering (2014).
  • [7] Shinwari M. W., Deen M. J., Landheer D., "Study of the electrolyte-insulator-semiconductor field-effect transistor (EISFET) with applications in biosensor design," Microelectronics Reliability 47(12), 2025-2057 (2007).
  • [8] Susloparova A., Thang Vu X., Koppenhöfer D., Law J. K., Ingebrandt S., "Investigation of ISFET device parameters to optimize for impedimetric sensing of cellular adhesion" Phys. Status Solidi A. 211, 1395–1403 (2014).
  • [9] Perez J. F. V., Velasco M. M. M., Rosas M. E. M., Reyes H. L. M., "ISFET sensor characterization," Procedia Engineering 35, 270-275 (2012).
  • [10] Kaisti, M., "Detection principles of biological and chemical FET sensors," Biosensors and Bioelectronics 98, 437-448 (2017).
  • [11] Akbari E., Moradi R., Afroozeh A., Alizadeh A., Nilashi M., "A new approach for prediction of graphene based ISFET using regression tree and neural network," Superlattices and Microstructures 130, 241-248 (2019).
  • [12] Sarkar D., Liu W., Xie X., Anselmo A. C., Mitragotri S., Banerjee K., "MoS2 Field-Effect Transistor for Next-Generation Label-Free Biosensors," ACS nano 8 (2014).
  • [13] Schäfer S., Eick S., Hofmann B., Dufaux T., Stockmann R., Wrobel G., et al., "Time-dependent observation of individual cellular binding events to field-effect transistors," Biosensors and Bioelectronics 24, 1201–1208 (2009).
  • [14] Firek P., Cichomski M., Waskiewicz M., Piwoński I., Kisielewska A., "ISFET structures with chemically modified membrane for bovine serum albumin detection," Circuit World 44, 45-50 (2018).
  • [15] Akbari E., Nabipour N., Hadavi S. M., Nilashi M., "Analytical investigation of ion-sensitive field effect transistor based on graphene," J Mater Sci: Mater Electron. 31, 6461–6466 (2020).
  • [16] Martinoia S., Rosso N., Grattarola M., Lorenzelli L., Margesin B., Zen M., "Development of ISFET array-based microsystems for bioelectrochemical measurements of cell populations," Biosensors & Bioelectronics 16, 1043–1050 (2001).
  • [17] Meng L., Fan D., Huang Y., Jiang Z., Zhang C., "Comparison studies of surface cleaning methods for PAN-based carbon fibers with acetone, supercritical acetone and subcritical alkali aqueous solutions," Applied Surface Science 261, 415–421 (2012).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4447550f-5449-4693-9b17-30f25abc8e80
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.