PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mobile forms vs the total content of thallium in activated sludge

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Formy mobilne a całkowita zawartość talu w osadzie czynnym
Języki publikacji
EN
Abstrakty
EN
Sewage sludge from municipal wastewater treatment plants is currently a serious environmental problem, given its diversity due to the variability of time and heavy metal content. Current research on the monitoring of heavy metals is based on the determination of Pb, Cd, Hg, Ni, Zn, Cu and Cr. This makes any thallium content data diffi cult to access. The study estimated the degree of contamination of sewage sludge with thallium. The sludge samples came from a sewage treatment plant located in Poland. The results are presented for the total concentration of thallium and its mobile forms. These samples were analyzed by diff erential pulse voltammetry. The results showed that the average thallium content was 0.203 μg/g and its mobile form was 0.025 μg/g. The conducted research shows that almost 13% of thallium from sewage sludge can be gradually released into the environment.
PL
Osady ściekowe z komunalnych oczyszczalni ścieków stanowią poważny problem dla środowiska, biorąc pod uwagę ich różnorodność spowodowaną zmiennością czasu i zawartością metali ciężkich. Aktualne badania nad monitoringiem metali ciężkich opierają się na oznaczaniu Pb, Cd, Hg, Ni, Zn i Cr. To sprawia, że jakiekolwiek dane dotyczące zawartości talu są trudno dostępne. Próbki osadów analizowano za pomocą woltamperometrii impulsowej różnicowej. Wyniki wykazały, że średnia zawartość talu wynosiła 0,203 μg/g, a jego form mobilnych 0,025 μg/g. Z przeprowadzonych badań wynika, że prawie 13% Tl z osadów ściekowych może być stopniowo uwalniane do środowiska.
Słowa kluczowe
Rocznik
Strony
21--27
Opis fizyczny
Bibliogr. 31 poz., rys., tab., wykr.
Twórcy
  • Poznan University of Technology, Faculty of Chemical Technology, Poland
  • Poznan University of Technology, Faculty of Chemical Technology, Poland
  • Poznan University of Technology, Faculty of Chemical Technology, Poland
Bibliografia
  • 1. Ahumada, I., Escudero, P., Ascar, L., Mendoza, J. & Richter, P. (2004). Extractability of Arsenic, Copper, and Lead in Soils of a Mining and Agricultural Zone in Central Chile. Communications in Soil Science and Plant Analysis, 35, pp. 1615–1634, DOI: 10.1081/CSS-120038558
  • 2. Alvarez-Ayuso, E., Otones, V., Murciego, A., Garcia-Sanchez, A. & Santa Regina, I. (2013). Zinc, cadmium and thallium distribution in soils and plants of area impacted by sphalerite-bearing mine wastes. Geoderma, 207–208, pp. 25–34, DOI: 10.1016/j.geoderma.2013.04.033
  • 3. Council Directive of 21.III.1991 concerning urban wastewater treatment. 91/271/EEC
  • 4. De La Rochebrochard, S., Naffrechoux, E., Drogui, P., Mercier, G. & Blais, J. (2013). Low frequencyultrasound-assisted leaching of sewage sludge for toxic metal removal, dewatering and fertilizingproperties preservation. Ultrasonics Sonochemistry, 20, pp. 109–117, DOI: 10.1016/j.ultsonch.2012.08.001
  • 5. Dmowski, K., Kozakiewicz, A. & Kozakiewicz, M. (2002). Bioindication thallium search in southern Poland. Kosmos, 51(2), pp. 151–163. (in Polish)
  • 6. Finkelman, R. (1999). Trace elements in coal. Environmental and health significance. Biological Trace Element Research, 67(3), pp. 197–204, DOI: 10.1007/BF02784420
  • 7. Frankowski, M., Zioła-Frankowska A., Kowalski, A. & Siepak., J. (2010). Fractionation of heavy metals in bottom sediments using Tessier procedure. Environmental Earth Sciences, 60, pp. 1165–1178, DOI: 10.1007/s12665-009-0258-3
  • 8. Fytili, D. & Zabaniotou, A. (2008). Utilization of sewage sludge in EU application of old and new methods a review. Renewable and Sustainable Energy Reviews, 12 (1), pp. 116–140, DOI: 10.1016/j.rser.2006.05.014
  • 9. Galván-Arzate, S. & Santamaria, A. (1998). Thallium toxicity. Toxicology Letters, 99(1), pp. 1–13, DOI: 10.1016/s0378-4274(98)00126-x
  • 10. Ibragimow, A., Głosińska., G., Siepak, M. & Walna, B. (2010). Heavy metals in fluvial sediments of the Odra river flood plains- -introductory research. Quaestiones geographicae, 29, pp. 37–47, DOI: 10.2478/v10117-010-0004-7
  • 11. Kowalik, R,, Gawdzik, J., Gawdzik. B. & Gawdzik, A. (2020). Analysis of the mobility of heavy metals in sludge for the sewage treatment plant in Daleszyce. Structure and Environment, 12, 85, DOI: 10.30540/sae-2020-010
  • 12. Larner, B., Seen, A. & Townsend, A. (2006). Comparative study of optimized BCR sequential extraction scheme and acid leaching of elements in the certified reference material NIST 2711. Analytica Chimica Acta, 556, pp. 444–449, DOI: 10.1016/j.aca.2005.09.058
  • 13. Łukaszewski, Z., Jakubowska, M., Zembrzuski, W., Karbowska, B. & Pasieczna,A. (2010). Flow – injection differential pulse anodic stripping voltammetry as a tool for thallium monitoring in the environment. Electroanalysis, 22 (17–18), pp. 1963–1966, DOI: 10.1002/elan.201000151
  • 14. Lukaszewski, Z., Karbowska, B., Zembrzuski, W. & Siepak, M. (2012). Thallium in fractions of sediments formed during the 2004 tsunami in Thailand. Ecotoxicology and Environmwntal Safety, 80, pp. 184–189, DOI: 10.1016/j.ecoenv.2012.02.026
  • 15. Madrid, F., Reinoso, R., Florido, M., Barrientos, E., Ajmone-Marsan, F., Davidson, C. & Madrid, L. (2007). Estimating the extractability of potentially toxic metals in urban soils: A comparison of several extracting solutions. Environmental Pollution, 147, pp. 713–722, DOI: 10.1016%2Fj.envpol.2006.09.005
  • 16. Merrington, G., Oliver, I., Smernik., R. & McLaughlin, M. (2003). The influence of sewage sludge properties on sludge-borne metal availability. Advances in Environmental Research, 8, pp. 21–36, DOI: 10.1016/S1093-0191(02)00139-9
  • 17. Pathak, A., Dastidar, M. & Sreekrishnan, T. (2009). Bioleaching of heavy metals from sewage sludge: A review. Journal of Environmental Management, 90, pp. 2343–2353, DOI: 10.1016/j.jenvman.2008.11.005
  • 18. Querol, X., Fernandez-Turiel, J. & Lopez-Soler, A. (1995). Trace elements in coal and their behaviour during combustion in a large power station. Fuel, 74(3), pp. 331–343, DOI: 10.1016/0016-2361(95)93464-O
  • 19. Quevauviller, Ph. (2002). SM&T activities in support of standardization of operationally defined extraction procedures for soil and sediment analysesd, [In] Ph. Quevauviller (ed.), Methodologies in soil and sediment fractionation studies. Single and sequential extraction procedures, European Commission, DG Research, Brussels, Belgium, pp. 1–9.
  • 20. Regulation of the Minister of the Environment (Rozporządzenie Ministra Środowiska z dnia 6 lutego 2015 r. w sprawie komunalnych osadów ściekowych. Dz.U. 2015 poz. 25).
  • 21. Regulation of the Minister of the Environment dated. 1.8.2002r. on municipal sewage sludge, Acts. Laws No. 134, item 1140.
  • 22. Resolution of the Council of Ministers of Polish Government No 233, 29.12.2006.
  • 23. Smith, K., Fowler, G., Pullket, S. & Graham, N. (2009). Sewage sludge-based adsorbents: A review of their production, properties and use in water treatment applications. Water Research, 43, pp. 2569–2594, DOI: 10.1016/j.watres.2009.02.038
  • 24. Svancara, I., Ostapczuk, P., Arunchalam, J., Emons, H.E. & Vytras, K. (1997). Determination of thallium in environmental samples using potentiometric stripping analysis. Method development, Electroanalysis, 9(1), pp. 26–31, DOI: 10.1002/elan.1140090108
  • 25. Szarek, Ł. (2020). Leaching of heavy metals from thermal treatment municipal sewage sludge fly ashes. Archives of Environmental Protection, 46(3), pp. 49–59, DOI: 10.24425/aep.2020.13453
  • 26. Vanek, A., Chrastny, V., Komarek, M., Penizek, V., Teper, L., Cabala, J. & Drabek, O. (2013). Geochemical position of thallium in soils from a smelter-impacted area. Journal of Geochemical Exploration, 124, pp. 176–182, DOI: org/10.1016%2Fj.gexplo.2012.09.002
  • 27. Vanek, A., Komarek, M., Vokurkova, P., Mihaljevic, M., Sebek, O., Panuskova, G., Chrastny, V. & Drabek, O. (2011). Effect of illite and birnessite on thallium retention and bioavailability in contaminated soils. Journal of Hazardous Materials, 191, pp. 170–176, DOI: 10.1016/j.jhazmat.2011.04.065
  • 28. Viraraghavan, T. & Srinivasan, A. (2011). Thallium: Environmental Pollution and Health Effects, Encyclopedia of Environmental Health, pp. 325–333, DOI: 10.1016/B978-0-444-52272-6.00643-7
  • 29. Woźniak, M., Żygadło, M. & Latońska, J. (2004). Assessing the Chemical Stability of Sewage Sludges Deposited Landfills under Natural Conditions. Ochrona Środowiska, 26, pp. 25–31.
  • 30. Xiao, T., Guha, J., Boyle, D., Liu, C. & Chen, J.(2004). Environmental concerns related to high thallium levels in soils and thallium uptake by plants in southwest Guizhou, China. Science of The Total Environment, 318(1–3), pp. 223–244, DOI: 10.1016/S0048-9697(03)00448-0
  • 31. Zitko, V. (1975). Toxicity and pollution potential of thallium, The Science of the Total Environment, 4, pp. 185–192, DOI: 10.1016/0048-9697(75)90039-X
Uwagi
Opracowane ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4444a023-f6b3-49f7-b1be-365879113a1a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.