PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Reconsidering the glaciogenic origin of Gondwana diamictites of the Dwyka Group, South Africa

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Gondwana Late Palaeozoic Ice Age is probably best represented by the Dwyka Group in South Africa. Striated and grooved surfaces or pavements are commonly considered to have formed subglacially, as are diamictites which have been interpreted as in-situ or reworked tillites. These interpretations were tested by investigation of outcrops in formerly well-studied areas, throughout South Africa. Detailed analyses have focused on striated surfaces/pavements and surface microtextures on quartz sand grains in diamictites. The sedimentological context of four pavements, interpreter to be glaciogenic, display features commonly associated with sediment gravity flows, rather than glaciation. A total of 4,271 quartz sand grains were subsampled from outcrops that are considered mainly to be tillites formed by Continental glaciation. These grains, analysed by SEM, do not demonstrate the characteristic surface microtexture combinations of fracturing and irregular abrasion associated with Quaternary glacial deposits, but mainly a mix of surface microtextures associated with multicyclical grains. The Dwyka Group diamictites warrant reinterpretation as non-glacial sediment gravity flow deposits.
Czasopismo
Rocznik
Strony
83--113
Opis fizyczny
Bibliogr. 165 poz.
Twórcy
  • UmeåFoU AB, Vallmov 61, 903 52 Umeå, Sweden
  • 9 Gradwell Street, Parys 9585, South Africa
Bibliografia
  • Amblas, D., Gerber, T.P., Canals, M., Pratson, L.F., Urgeles, R., Lastras, G. & Calafat, A.M., 2011. Transient erosion in the Valencia Trough turbidite systems, NW Mediterranean Basin. Geomorphology 130, 173–184.
  • Anderson, A.M. & McLachlan, I.R., 1976. The plant record in the Dwyka and Ecca series (Permian) of the south-western half of the Great Karroo Basin, South Africa. Palaeontologica Africana 19, 31–42.
  • Baas, J.H., Tracey, N.D. & Peakall, J., 2021. Sole marks reveal deep-marine depositional process and environment: Implications for flow transformation and hybrid-event-bed models. Journal of Sedimentary Research 91, 986–1009.
  • Baiyegunhi, C. & Gwavava, O., 2016. Variations in isochore thickness of the Ecca sediments in the eastern Cape Province of South Africa, as deduced from gravity models. Acta Geologica Sinica 90, 1699–1712.
  • Bangert, B. & Von Brunn, V., 2001. Tuffaceous beds in glaciogenic argillites of the Late Palaeozoic Dwyka Group of KwaZulu-Natal, South Africa. Journal of African Earth Sciences 32, 133–140.
  • Barbolini, N., Rubidge, B. & Bamford, M.K., 2018. A new approach to biostratigraphy in the Karoo retroarc foreland system: utilising restricted-range palynomorphs and their first appearance datums for correlation. Journal of African Earth Sciences 140, 114–133.
  • Bechstädt, T., Jäger, H., Rittersbacher, A., Schweisfurth, B., Spence, G., Werner, G. & Boni, M.. 2018. The Cryogenian Ghaub Formation of Namibia – New insights into Neoproterozoic glaciations. Earth-Science Reviews 177, 678–714.
  • Bell, D., Hodgson, D.M., Pontén, A.S.M., Hansen, L.A.S., Flint, S.S. & Kane, I.A., 2020. Stratigraphic hierarchy and three-dimensional evolution of an exhumed submarine slope channel system. Sedimentology 67, 3259–3289.
  • Bennett, M.R., Doyle, P. & Mather, A.E., 1996. Dropstones: their origin and significance. Palaeogeography, Palaeoclimatology, Palaeoecology 121, 331–339.
  • Blignault, H.J. & Theron, J.N., 2015. The facies association tillite, boulder beds, boulder pavements, liquefaction structures and deformed drainage channels in the Permo-Carboniferous Dwyka Group, Elandsvlei area, South Africa. South African Journal of Geology 118, 157–172.
  • Bouma, A.H., 1964. Turbidites. [In:] A.H. Bouma & A.Brouwer (Eds): Turbidites. Elsevier, Amsterdam, pp. 251–256.
  • Brooks, H.L., Hodgson, D.M., Brunt, R.L., Peakall, J., Hofstra, M. & Flint, S.S., 2018. Deep-water channel-lobe transition zone dynamics: Processes and depositional architecture, an example from the Karoo Basin, South Africa. Bulletin of the Geological Society of America 130, 1723–1746.
  • Cape Geosites, 2014. Oorlogskloof glacial floor, Council for Geoscience, Western Cape Branch of the Geological Society of South Africa. https://c38e147f-b0d8-493b-a025-63dcdcddec22.filesusr.com/ugd/0de4bd_0c9446dc737e43b1acfa0f0f205464ad.pdf.
  • Caputo, M.V. & Santos, R.O.B., 2020. Stratigraphy and ages of four Early Silurian through Late Devonian, Early and Middle Mississippian glaciation events in the Parnaíba Basin and adjacent areas, NE Brazil. Earth-Science Reviews 207, 103002.
  • Cardona, S., Wood, L.J., Dugan, B., Jobe, Z. & Strachan, L.J., 2020. Characterization of the Rapanui mass-transport deposit and the basal shear zone: Mount Messenger Formation, Taranaki Basin, New Zealand. Sedimentology 67, 2111–2148.
  • Catuneanu, O., Wopfner, H., Eriksson, P.G., Cairncross B., Rubidge, B.S., Smith, R.M.H. & Hancox, P.J., 2005. The Karoo basins of south-central Africa. Journal of African Earth Sciences 43, 211–253.
  • Cesta, J.M., 2015. Soft-sediment slickensides in the Stockton Formation, Stockton, New Jersey. Geological Society of America, Paper No. 45-1.
  • Chumakov, N.M. & Zharkov, M.A., 2002. Climate during Permian-Triassic biosphere reorganizations. Article 1: Climate of the Early Permian. Stratigraphy and Geological Correlation 10, 586–602.
  • Costa, P.J.M., Rasteiro da Silva, D., Figueirinhas, L. & Lario, J., 2019. The importance of coastal geomorphological setting as a controlling factor on microtextural signatures of the 2010 Maule (Chile) tsunami deposit. Geologica Acta 17, 1–10.
  • Craddock, J.P., Ojakangas, R.W., Malone, D.V., Konstantinou, A., Mory, A., Bauer, W., Thomas, R.J., Affinati, S.C., Pauls, K., Zimmerman, U., Botha, G., Rochas-Campos, A., dos Santos, P.R., Tohver, E., Riccomini, C., Martin, J., Redfern, J., Horstwood, M. & Gehrels, G., 2019. Detrital zircon provenance of Permo-Carboniferous glacial diamictites across Gondwana. Earth-Science Reviews 192, 285–316.
  • Crowell, J.C., 1957. Origin of pebbly mudstones. Bulletin of the Geological Society of America 68, 993–1010.
  • Cruikshank, K.M. & Aydin, A., 1995. Unweaving the joints in Entrada Sandstone, Arches National Park, Utah, U.S.A. Journal of Structural Geology 17, 409–421.
  • Dahl, T.W. & Arens, S.K.M., 2020. The impacts of land plant evolution on Earth´s climate and oxygenation state – An interdisciplinary review. Chemical Geology 547, 119665.
  • Dakin, N., Pickering, K.T., Mohrig, D. & Bayliss, N.J., 2013. Channel-like features created by erosive submarine debris flows: field evidence from the Middle Eocene Ainsa Basin, Spanish Pyrenees. Marine and Petroleum Geology 41, 62–71.
  • Deynoux, M. & Ghienne, J.-F., 2004. Late Ordovician glacial pavements revisited: a reappraisal of the origin of striated surfaces. Terra Nova 16, 95–101.
  • Deynoux, M. & Trompette, R., 1976. Discussion: Late Precambrian mixtites: glacial and/or nonglacial? Dealing especially with the mixtites of West Africa. American Journal of Science 276, 1302–1315.
  • Dietrich, P. & Hofmann, A., 2019. Ice-margin fluctuation sequences and grounding zone wedges: The record of the Late Palaeozoic ice age in the eastern Karoo Basin (Dwyka Group, South Africa). Depositional Record 5, 247–271.
  • Dietrich, P., Franchi, F., Setlhabi, L., Prevec, R. & Bamford, M., 2019. The nonglacial diamictite of Toutswemogala Hill (Lower Karoo Supergroup, Central Botswana): Implications on the extent of the Late Paleozoic ice age in the Kalahari–Karoo Basin. Journal of Sedimentary Research 89, 875–889.
  • Dietrich, P., Griffis, N.P., Le Heron, D.P., Montañez, I.P., Kettler, C., Robin, C. & Guillocheau, F., 2021. Fjord network in Namibia: A snapshot into the dynamics of the late Paleozoic glaciation. Geology 49. https://doi.org/10.1130/G49067.1.
  • Dill, R.F., 1964. Sedimentation and erosion in Scripps Submarine Canyon head. [In:] R.L. Miller (Ed.): Papers in Marine Geology. Macmillan, New York, pp. 23–41.
  • Draganits, E., Schlaf, J., Grasemann, B. & Argles, T., 2008. Giant submarine landslide grooves in the Neoproterozoic/Lower Cambrian Phe Formation, northwest Himalaya: Mechanisms of formation and palaeogeographic implications. Sedimentary Geology 205, 126–141.
  • du Toit, A.L., 1926. The Geology of South Africa. Oliver & Boyd, Edinburgh, pp. 205–215.
  • Dufresne, A.& Davies, T.R., 2009. Longitudinal ridges in mass movement deposits. Geomorphology 105, 171–181.
  • Dufresne, A., Zernack, A., Bernard, K., Thouret, J.-C. & Roverato, M., 2021. Sedimentology of volcanic debris avalanche deposits. [In:] M. Roverato, A. Dufresne & J. Procter (Eds.): Volcanic Debris Avalanches. Advances in Volcanology. Springer, pp. 175–210.
  • Dunlevey, J.N. & Smith, A.M., 2011. Sedimentological evidence for an interglacial in the Permo-Carboniferous Dwyka Group, Coedmore Quarry, Durban, South Africa. South African Journal of Geology 114, 159–166.
  • Embley, R.W., 1982. Anatomy of some Atlantic margin sediment slides and some comments on ages and mechanisms. [In:] S. Saxov & J.K. Nieuwenhuis (Eds): Marine Slides and Other Mass Movements. Plenum Press, New York, pp. 189–213.
  • Enos, P., 1969. Anatomy of flysch. Journal of Sedimentary Research 39, 680–723.
  • Evenson, E.B., Dreimanis, A. & Newsome, J.W., 1977. Subaquatic flow tills: a new interpretation for the genesis of some laminated deposits. Boreas 6, 115–133.
  • Eyles, N., 1993. Earth´s glacial record and its tectonic setting. Earth-Science Reviews 35, 1–248.
  • Eyles, N. & Januszczak, N., 2007. Syntectonic subaqueous mass flows of the Neoproterozoic Otavi Group, Namibia: where is the evidence of global glaciation? Basin Research 19, 179–198.
  • Fagereng, Å., 2014. Significant shortening by pressure solution creep in the Dwyka diamictite, Cape Fold Belt, South Africa. Journal of African Earth Sciences 97, 9–18.
  • Fedorchuk, N.D., Isbell, J.L., Griffis, N.P., Montañez, I.P., Vesely, F.F., Iannuzzi, R., Mundil, R., Yin, Q-Z., Pauls, K.N. & Rosa, E.L.M., 2019. Origin of paleovalleys on the Rio Grande do Sul Shield (Brazil): implications for the extent of late Paleozoic glaciation in west-central Gondwana. Palaeogeography, Palaeoclimatology, Palaeoecology 531, Part B, 108738.
  • Festa, A., Ogata, K., Pini, G.A., Dilek, Y. & Alonso, J.L., 2016. Origin and significance of olistostromes in the evolution of orogenic belts: a global synthesis. Gondwana Research 39, 180–203.
  • Fleisher, P.J., Lachniet, M.S., Muller, E.H. & Bailey, P.K., 2006. Subglacial deformation of trees within overridden foreland strata, Bering Glacier, Alaska. Geomorphology 75, 201–211.
  • Flint, R.F., 1961. Geological evidence of cold climate. [In:] A.E.M. Nairn (Ed.): Descriptive Palaeoclimatology. Interscience Publishing, New York, pp. 140–155.
  • Geophysical Discussion of the Royal Astronomical Society, 1960. Geophysical journal of the Royal Astronomical Society (incorporating the Geophysical Supplement to the Monthly Notices of the R.A.S.) 3, 127–132.
  • Glicken, H., 1996. Rockslide-debris avalanche of May 18, 1980, Mount St. Helens Volcano, Washington. U.S. Geological Survey, Open-File Report 96–677, 98 pp,
  • Górska, M.E., Woronko, B., Kossowski, T.M. & Pisarska-Jamroży, M., 2022. Micro-scale frost-weathering simulation – Changes in grain-size composition and influencing factors. Catena 212, 106106.
  • Götz, A.E., Ruckwied, K. & Wheeler, A., 2018. Marine flooding surfaces recorded in Permian black shales and coal deposits of the Main Karoo Basin (South Africa): implications for basin dynamics and cross-basin correlation. International Journal of Coal Geology 190, 178–190.
  • Griffis, N., Montañez, I., Mundil, R., Le Heron, D., Dietrich, P., Kettler, C., Linol, B., Mottin, T., Vesely, F., Iannuzzi, R., Huyskens, M. & Yin, Q.-Z., 2021. High-latitude ice and climate control on sediment supply across SW Gondwana during the late Carboniferous and early Permian. Bulletin of the Geological Society of America 133, 2113–2124.
  • Haflidason, H., Sejrup, H.P., Nygård, A., Mienert, J., Bryn, P., Lien, R., Forsberg, C.F., Berg, K. & Masson, D., 2004. The Storegga Slide: architecture, geometry and slide development. Marine Geology 213, 201–234.
  • Haldorsen, S., Von Brunn, V., Maud, R. & Truter, E.D., 2001. A Weichselian deglaciation model applied to the early Permian glaciation in the northeast Karoo Basin, South Africa. Journal of Quaternary Science 16, 583–593.
  • Hancox, P.J. & Götz, A.E., 2014. South Africa’s coalfields – A 2014 perspective. International Journal of Coal Geology 132, 170–254.
  • Hansen, L.A.S., Hodgson, D.M., Pontén, A., Bell, D. & Flint, S., 2019. Quantification of basin-floor fan pinchouts: examples from the Karoo Basin, South Africa. Frontiers in Earth Science 7, article 12.
  • Hawkes, L., 1943. The erratics of the Cambridge Greensand – their nature provenance and mode of transport. Quarterly Journal of the Geological Society of London 99, 93–104.
  • Horan, K., 2015. Falkland Islands (Islas Malvinas) in the Permo-Carboniferous. Springer Earth System Sciences, pp. 45–70.
  • Huber, H., Koeberl, C., Mcdonald, I. & Reimold, W.U., 2001. Geochemistry and petrology of Witwatersrand and Dwyka diamictites from South Africa: search for an extraterrestrial component. Geochimica et Cosmochimica Acta 65, 2007–2016.
  • Isbell, J.L., Cole, D.I. & Catuneanu, O., 2008. Carboniferous-Permian glaciation in the main Karoo Basin, South Africa: Stratigraphy, depositional controls, and glacial dynamics. [In:] C.R. Fielding, T.D. Frank, & J.L. Isbell (Eds): Resolving the Late Paleozoic Ice Age in Time and Space. Geological Society of America Special Paper 441, pp. 71–82.
  • Isbell, J.L., Henry, L.C., Reid, C.M & Fraiser, M.L., 2013. Sedimentology and palaeoecology of lonestone-bearing mixed clastic rocks and cold-water carbonates of the Lower Permian basal beds at Fossil Cliffs, Maria Island, Tasmania (Australia): Insight into the initial decline of the late Palaeozoic ice age. [In:] A. Gasiewicz & M. Słowakiewicz (Eds): Palaeozoic Climate Cycles: Their Evolutionary and Sedimentological Impact. Geological Society, London, Special Publications 376, pp. 307–341.
  • Isbell, J.L., Henry, L.C., Gulbranson, E., Limarino, C.O., Fraiser, M.L., Koch, Z.J., Ciccioli, P.L. & Dineen, A.A., 2012. Glacial paradoxes during the late Paleozoic ice age: evaluating the equilibrium line altitude as a control on glaciation. Gondwana Research 22, 1–19.
  • Iverson, N.R., 1991. Morphology of glacial striae: Implications for abrasion of glacier beds and fault surfaces. Bulletin of the Geological Society of America 103, 1308–1316.
  • John, B.S., 1979. The great ice age: Permo-Carboniferous. [In:] B.S. John (Ed.): The Winters of the World. Davies & Charles, Newton Abbot, pp. 154–172.
  • Johnson, M.R., Van Vuuren, C.J., Visser, J.N.J., Cole, D.I., Wickens, H.D.V., Christie, A.D.M. & Roberts, D.L., 1997. The foreland Karoo Basin, South Africa [In:] R.C. Selley (Ed.): African Basins, Sedimentary Basins of the World 3. Elsevier, Amsterdam, pp. 269–317.
  • Kalińska, E., Lamsters, K., Karušs, J., Krievāns, M., Rečs, A. & Ješkins, J., 2022. Does glacial environment produce glacial mineral grains? Pro- and supra-glacial Icelandic sediments in microtextural study. Quaternary International 617, 101–111.
  • Kalińska-Nartiša, E., Woronko, B. & Ning, W., 2017. Microtextural inheritance on quartz sand grains from Pleistocene periglacial environments of the Mazovian Lowland, Central Poland. Permafrost and Periglacial Processes 28, 741–756.
  • Kennedy, K. & Eyles, N., 2021. Syn-rift mass flow generated ‘tectonofacies’ and ‘tectonosequences’ of the Kingston Peak Formation, Death Valley, California, and their bearing on supposed Neoproterozoic panglacial climates. Sedimentology 68, 352–381.
  • Kent, D.V. & Muttoni, G., 2020. Pangea B and the Late Paleozoic ice age. Palaeogeography, Palaeoclimatology, Palaeoecology 553, 109753.
  • Kneller, B.C., Edwards, D., McCaffrey, W.D. & Moore, R., 1991. Oblique reflection of turbidity currents. Geology 14, 250–252.
  • Kut, A.A.,Woronko, B., Spektor, V.V. & Klimova, I.V., 2021. Grain-surface microtextures in deposits affected by periglacial conditions (Abalakh High-Accumulation Plain, Central Yakutia, Russia). Micron 146, 103067.
  • Le Heron, D.P., Busfield, M.E. & Collins, A.S., 2014. Bolla Bollana boulder beds: a Neoproterozoic trough mouth fan in South Australia? Sedimentology 61, 978–995.
  • Le Heron, D.P., Heninger, M., Baal, C. & Bestmann, M., 2020. Sediment deformation and production beneath soft-bedded Palaeozoic ice sheets. Sedimentary Geology 408, 105761.
  • Le Heron, D.P, Sutcliffe, O.E., Whittington, R.J. & Craig, J., 2005. The origins of glacially related soft-sediment deformation structures in Upper Ordovician glaciogenic rocks: implication for ice-sheet dynamics. Palaeogeography, Palaeoclimatology, Palaeoecology 218, 75–103.
  • Le Heron, D.P., Dietrich, P., Busfield, M.E., Kettler, C., Bermanschläger, S. & Grasemann, B., 2019. Scratching the surface: footprint of a late Carboniferous ice sheet. Geology 47, 1034–1038.
  • Le Heron, D.P., Kettler, C., Griffis, N.P., Dietrich, P., Montañez, I.P., Osleger, D.A., Hofmann, A, Douillet, G. & Mundil, R., 2021. The Late Palaeozoic Ice Age unconformity in southern Namibia viewed as a patchwork mosaic. Depositional Record 00:1–17.
  • Lindsay, J.F., 1970. Depositional environment of Paleozoic glacial rocks in the Central Transantarctic Mountains. Bulletin of the Geological Society of America 81, 1149–1171.
  • Liu, Y. & Gastaldo, R.A., 1992. Characteristics and provenance of log-transported gravels in a Carboniferous channel deposit. Journal of Sedimentary Petrology 62, 1072–1083.
  • Loope, D.B. & Burberry, C.M., 2018. Sheeting joints and polygonal patterns in the Navajo Sandstone, southern Utah: Controlled by rock fabric, tectonic joints, buckling, and gullying. Geosphere 14, 1818–1836.
  • Mahaney, W.C., 2002. Atlas of Sand Grain Surface Textures and Applications. Oxford University Press, New York, 237 pp.
  • Major, J.J., Pierson, T.C. & Scott, K.M., 2005. Debris flows at Mount St. Helens, Washington, USA. [In:] M. Jakob, & O. Hungr (Eds): Debris-Flow Hazards and Related Phenomena. Praxis/Springer, Berlin, pp. 685–731.
  • Mangerud, J., Hughes, A.L.C., Sæle, T.H. & Svendsen, J.I., 2019. Ice-flow patterns and precise timing of ice sheet retreat across a dissected fjord landscape in western Norway. Quaternary Science Reviews 214, 139–163.
  • Martin, H., 1981. The late Palaeozoic Gondwana glaciation. Geologische Rundschau 70, 480–496.
  • Master, S., 2012. Hertzian fractures in the sub-Dwyka Nooitgedacht striated pavement, and implications for the former thickness of Karoo strata near Kimberley, South Africa. South African Journal of Geology 115, 561–576.
  • McLoughlin, S., 2011. Glossopteris – insights into the architecture and relationships of an iconic Permian Gondwanan plant. Journal of the Botanical Society of Bengal 65, 1–14.
  • Mitchell, N.C., 2006. Morphologies of knickpoints in submarine canyons. Bulletin of the Geological Society of America 18, 589–605.
  • Molén, M.O., 2014. A simple method to classify diamicts by scanning electron microscope from surface microtextures. Sedimentology 61, 2020–2041.
  • Molén, M.O., 2017. The origin of Upper Precambrian diamictites; Northern Norway: A case study applicable to diamictites in general, Geologos 23, 163–181.
  • Molén, M.O., 2021. Field evidence suggests that the Palaeoproterozoic Gowganda Formation in Canada is non-glacial in origin. Geologos 27, 73–91.
  • Molén, M.O., 2022a. Glaciation or not? An analytic review of features of glaciation and sediment gravity flows: introducing a methodology for field research. Submitted. https://www.essoar.org/doi/10.1002/essoar.10510880.1
  • Molén, M.O., 2022b. Glaciation and mass flows: patterns, processes and models – a short analytic review. In progress.
  • Montañez, I.P. & Poulsen, C.J., 2013. The Late Paleozoic Ice Age: An evolving paradigm. Annual Review of Earth and Planetary Sciences 41, 629–656.
  • Montañez, I.P., McElwain, J.C., Poulsen, C.J., White, J.D., DiMichele, W.A., Wilson, J.P., Griggs, G. & Hren, M.T., 2016. Climate, pCO2 and terrestrial carbon cycle linkages during late Palaeozoic glacial-interglacial cycles. Nature Geoscience 9, 824–828.
  • Myers, T.S., 2016. CO2 and late Palaeozoic glaciation. Nature Geoscience 9, 803–804.
  • Norman, N., 2013. Geology of the Beaten Track. Struik Nature, Cape Town, 256 pp.
  • Normandeau, A., Lajeunesse, P. & St-Onge, G., 2015. Submarine canyons and channels in the Lower St. Lawrence Estuary (Eastern Canada): Morphology, classification and recent sediment dynamics. Geomorphology 241, 1–18.
  • Ortiz-Karpf, A., Hodgson, D.M., Jackson, C.A.-L. & McCaffrey, W.D., 2017. Influence of seabed morphology and substrate composition on mass-transport flow processes and pathways: insights from the Magdalena Fan, offshore Colombia. Journal of Sedimentary Research 87, 189–209.
  • Passchier, S., Hansen, M.A. & Rosenberg, J., 2021. Quartz grain microtextures illuminate Pliocene periglacial sand fluxes on the Antarctic continental margin. Depositional Record 7, 564–581.
  • Peakall, J., Best, J., Baas, J.H., Hodgson, D.M., Clare, M.A., Talling, P.T., Dorrell, R.M. & Lee, D.R., 2020. An integrated process-based model of flutes and tool marks in deep-water environments: Implications for palaeohydraulics, the Bouma sequence and hybrid event beds. Sedimentology 67, 1601–1666.
  • Petit, J.P. & Laville, E., 1987. Morphology and microstructures of hydroplastic slickensides in sandstone. [In:] M.E. Jones & R.M. Preston (Eds): Deformation of Sediments and Sedimentary Rocks. Geological Society, London, Special Publications 29, pp. 107–121.
  • Pickering, K.T, Underwood, M.B. & Taira, A., 1992. Open-ocean to trench turbidity-current flow in the Nankai Trough: flow collapse and reflection. Geology 20, 1099–1102.
  • Piper, D.J.W., Cochonat, P. & Morrison, M.L., 1999. The sequence of events around the epicentre of the 1929 Grand Banks earthquake: initiation of debris flows and turbidity current inferred from sidescan sonar. Sedimentology 46, 79–97.
  • Potter, P.E. & Pettijohn, F.J., 1963. Paleocurrents and basin analysis. Springer, Berlin, 296 pp.
  • Price, P.H., 1932. Erratic boulders in Sewell Coal of West Virginia. Journal of Geology 40, 62–73.
  • Puga Bernabéu, Á., Webster, J.M., Beaman, R.J., Thran, A., López Cabrera, J., Hinestrosa, G. & Daniell, J., 2020. Submarine landslides along the mixed siliciclastic carbonate margin of the great barrier reef (offshore Australia). [In:] K. Ogata, A. Festa, & G.A. Pini (Eds): Submarine Landslides: Subaqueous Mass Transport Deposits from Outcrops to Seismic Profiles. Geophysical Monograph 246, Wiley & Sons, pp. 313–337.
  • Rampino, M.R., 2017. Are some tillites impact-related debris-flow deposits? Journal of Geology 125, 155–164.
  • Ruban, D.A., Al-Husseini, M.I. & Iwasaki, Y., 2007. Review of Middle East Paleozoic plate tectonics. GeoArabia 12, 35–56.
  • Ryder, J. M. & Thomson, B., 2011. Neoglaciation in the southern Coast Mountains of British Columbia: Chronology prior to the late Neoglacial maximum. Canadian Journal of Earth Science 23, 273–287.
  • Sandberg, C.G.S., 1928. The origin of the Dwyka Conglomerate of South Africa and other “glacial” deposits. Geological Magazine 65, 117–138.
  • Savage, N.M., 1972. Soft-dediment glacial grooving of Dwyka Age in South Africa. Journal of Sedimentary Petrology 42, 307–308.
  • Scheffler, K., Hoernes, S. & Schwark, L., 2003. Global changes during Carboniferous–Permian glaciation of Gondwana: Linking polar and equatorial climate evolution by geochemical proxies. Geology 31, 605–608.
  • Scheiber-Enslin, S.E., Ebbing, J. & Webb, S.J., 2015. New depth maps of the main Karoo Basin, used to explore the Cape isostatic anomaly, South Africa. South African Journal of Geology 118, 225–248.
  • Schermerhorn, L.J.G., 1970. Saharan ice. Geotimes 15, 7–8.
  • Schermerhorn, L.J.G., 1971. Upper Ordovician glaciation in Northwest Africa? Discussion. Bulletin of the Geological Society of America 82, 265–268.
  • Schermerhorn, L.J.G., 1974. Late Precambrian mixtites: glacial and/or nonglacial? American Journal of Science 274, 673–824.
  • Schermerhorn, L.J.G., 1976a. Reply. American Journal of Science 276, 375–384.
  • Schermerhorn, L.J.G., 1976b. Reply. American Journal of Science 276, 1315–1324.
  • Schermerhorn, L.J.G., 1977. Late Precambrian glacial climate and the Earth´s obliquity – a discussion. Geological Magazine 114, 57–64.
  • Schneider, J.L. & Fisher, R.V., 1998. Transport and emplacement mechanisms of large volcanic debris avalanches: evidence from the northwest sector of Cantal Volcano (France). Journal of Volcanology and Geothermal Research 83, 141–165.
  • Scotese, C.R., Song, H., Mills, B.J.W. & van der Meer, D.G., 2021. Phanerozoic paleotemperatures: The earth´s changing climate during the last 540 million years. Earth-Science Reviews 215, 103503.
  • Scott, K.M., 1988. Origin, Behavior and Sedimentology of Lahars and Lahar-runout Flows in the Toutle-cowlitz River System. U.S. Geological Survey Professional Paper 1447A, 76 pp.
  • Shanmugam, G., 2016. Submarine fans: a critical retrospective (1950–2015). Journal of Palaeogeography 5, 110–184.
  • Shanmugam, G., 2019. Reply to discussions by Zavala (2019) and by Van Loon, Hüeneke, and Mulder (2019) on Shanmugam, G. (2018), Journal of Palaeogeography, 7 (3): 197–238): ‘the hyperpycnite problem’. Journal of Palaeogeography 8, 31.
  • Shanmugam, G., 2021. Mass Transport, Gravity Flows, and Bottom Currents. Elsevier, 571 pp.
  • Shanmugam, G., Lehtonen, L.R., Straume, T., Syvertsen, S.E., Hodgkinson, R.J. & Skibej, M., 1994. Slump and debris-flow dominated upper slope facies in the Cretaceous of the Norwegian and Northern North Seas (61–67°N): implications for sand distribution. AAPG Bulletin 78, 910–937.
  • Shepard, F.P. & Dill, R.F., 1966. Submarine Canyons and Other Sea Valleys. Rand McNally, Chicago, 381 pp.
  • Simms, M.J., 2007. Uniquely extensive soft-sediment deformation in the Rhaetian of the UK: evidence for earthquake or impact? Palaeogeography, Palaeoclimatology, Palaeoecology 244, 407–423.
  • Slater, G., du Toit, A.L. & Haughton, S.H., 1932. The glaciated surfaces of Nooitgedacht, near Kimberley, and the Upper Dwyka boulder shales of the eastern part of Griqualand West (Cape Province), 1929. Transactions of the Royal Society of South Africa 20, 301–325.
  • Somelar, P., Vahur, S., Hamilton, T.S., Mahaney, W.C., Barendregt, R.W. & Costa, P. 2018. Sand coatings in paleosols: evidence of weathering across the Plio-Pleistocene boundary to modern times on Mt. Kenya. Geomorphology 317, 91–106.
  • Stavrakis, N., 1986. Sedimentary environments and facies of the Orange Free State coalfield. [In:] C.R. Anhaeusser & S. Maske (Eds): Mineral Deposits of Southern Africa vols. I and II. Geological Society of South Africa, Johannesburg, pp. 1939–1952.
  • Stavrakis, N. & Smyth, M., 1991. Clastic sedimentary environments and organic petrology of coals in the Orange Free State, South Africa. International Journal of Coal Geology 18, 1–16.
  • Stratten, T. & Humphreys, A.J.B., 1974. Extensive glacial pavement of Dwyka age near Douglas, Cape Province. South African Journal of Science 70, 44–45.
  • Talling, P.J., Masson, D.G., Sumner, E.J. & Malgesini, G., 2012. Subaqueous sediment density flows: depositional processes and deposit types. Sedimentology 59, 1937–2003.
  • Talling, P.J., Wynn, R.B., Masson, D.G., Frenz, M., Cronin, B.T., Schiebel, R, Akhmetzhanov, A.M., Dallmeier-Tiessen, S., Benetti, S., Weaver, P.P.E., Georgiopoulou, A., Zühlsdorff, C. & Amy, L.A., 2007. Onset of submarine debris flow deposition far from original giant landslide. Nature 450, 541–544.
  • Talling, P.J., Allin, J., Armitage, D.A., Arnott, R.W.C., Cartigny, M.J.B., Clare, M.A., Felletti, F., Covault, J.A., Girardclos, S., Hansen, E., Hill, P.H., Hiscott, R.N., Hogg, A.J., Clarke, J.H., Jobe, Z.R., Malgesini, G., Mozzato, A., Naruse, H., Parkinson, S., Peel, F.J., Piper, D.J., Pope, E., Postma, G., Rowley, P., Sguazzini, A., Stevenson, C.J., Sumner, E.J., Sylvester, Z., Watts, C. & Xu, J., 2015. Key future directions for research on turbidity currents and their deposits. Journal of Sedimentary Research 85, 153–169.
  • Tavener-Smith, T. & Mason, T.R., 1983. A late Dwyka (Early Permian) varvite sequence near Isandlwana, Zululand, South Africa. Palaeogeography, Palaeoclimatology, Palaeoecology 41, 233–249.
  • Van der Westhuizen, W.A., de Bruiyn, H. & Meintjes, P.G., 2006. The Ventersdorp Supergroup. [In:] M.R. Johnson, C.R. Anhaeusser & R.J. Thomas (Eds): The Geology of South Africa. Geological Society of South Africa, Johannesburg, pp. 187–208.
  • Vesely, F.F., Rodrigues, M.C.N.L., da Rosa, E.L.M., Amato, J.A., Trzaskos, B., Isbell, J.L. & Fedorchuk, N.D., 2018. Recurrent emplacement of non-glacial diamictite during the late Paleozoic ice age. Geology 46, 615–618.
  • Visser, J.N.J., 1981. Carboniferous topography and glaciation in the North-Western part of the Karoo Basin, South Africa. Annals of the Geological Survey of South Africa 15, 13–24.
  • Visser, J.N.J., 1982. Upper Carboniferous glacial sedimentation in the Karoo Basin near Prieska, South Africa. Palaeogeography, Palaeoclimatology, Palaeoecology 38, 63–92.
  • Visser, J.N.J., 1983a. Glacial marine sedimentation in the Late Paleozoic Karoo Basin, Southern Africa. [In:] B.F. Molnia (Ed.): Glacial-Marine Sedimentation. Plenum Press, New York, pp. 667–701.
  • Visser, J.N.J., 1983b. The problems of recognizing ancient subaqueous debris flow deposits in glacial sequences. Transactions of the Geological Society of South Africa 86, 127–135.
  • Visser, J.N.J., 1986. Lateral lithofacies relationships in the glacigene Dwyka Formation in the western and central parts of the Karoo Basin. Transactions of the Geological Society of South Africa 89, 373–383.
  • Visser, J.N.J., 1987. The palaeogeography of part of southwestern Gondwana during the Permo-Carboniferous glaciation. Palaeogeography, Palaeoclimatology, Palaeoecology 61, 205–219.
  • Visser, J.N.J., 1988. A Permo-Carboniferous tunnel valley system east of Barklay West, Northern Cape Province. South African Journal of Geology 91, 350–357.
  • Visser, J.N.J., 1989a. The Permo-Carboniferous Dwyka Formation of Southern Africa: deposition by a predominantly subpolar marine ice sheet. Palaeogeography, Palaeoclimatology, Palaeoecology 70, 377–391.
  • Visser, J.N.J., 1989b. Stone orientation in basal glaciogenic diamictite: four examples from the Permo-Carboniferous Dwyka Formation, South Africa. Journal of Sedimentary Petrology 59, 935–943.
  • Visser, J.N.J., 1990. Glacial bedforms at the base of the Permo-Carboniferous Dwyka Formation along the western margin of the Karoo Basin, South Africa. Sedimentology 37, 231–245.
  • Visser, J.N.J., 1994. The interpretation of massive rain-out and debris-flow diamictites from the glacial marine environment. [In:] M. Deynoux, J.M.G. Miller, E.W. Domack, N. Eyles, I.J. Fairchild & G.M. Young (Eds): Earth´s Glacial Record. Cambridge University Press, Cambridge, pp. 83–94.
  • Visser, J.N.J., 1996. A Late Carboniferous subaqueous glacial valley fill complex: Fluctuations in meltwater output and sediment flux. South African Journal of Geology 99, 285–291.
  • Visser, J.N.J., 1997. Deglaciation sequences in the Permo-Carboniferous Karoo and Kalahari basins of southern Africa: a tool in the analysis of cyclic glaciomarine basin fills. Sedimentology 44, 507–521.
  • Visser, J.N.J. & Kingsley, C.S., 1982. Upper Carboniferous glacial valley sedimentation in the Karoo Basin, Orange Free State. Transactions of the Geological Society of South Africa 85, 71–79.
  • Visser, J.N.J. & Loock, J.C. 1982. An investigation of the basal Dwyka tillite in the southern part of the Karoo Basin, South Africa. Transactions of the Geological Society of South Africa 85, 179–187.
  • Visser, J.N.J. & Loock, J.C., 1988. Sedimentary facies of the Dwyka Formation associated with the Nooitgedacht Glacial Pavements, Barkly West District. South African Journal of Geology, 91, 38–48.
  • Visser, J.N.J., Colliston, W.P. & Terreblanche, J.C., 1997b. The origin of soft-sediment deformation structures in Permo-Carboniferous glacial and proglacial beds, South Africa. Journal of Sedimentary Petrology 54, 1183–1196.
  • Visser, J.N.J., Loock, J.C. & Colliston, W.P., 1987. Subaqueous outwash fan and esker sandstones in the Permo-Carboniferous Dwyka Formation of South Africa. Journal of Sedimentary Petrology 57, 467–478.
  • Visser, J.N.J., van Niekerk, B.N. & van der Merwe, S.W., 1997a. Sediment transport of the late Palaeozoic glacial Dwyka Group in the southwestern Karoo Basin. South African Journal of Geology 100, 223–236.
  • Von Brunn, V., 1994. Glaciogenic deposits of the Permo-Carboniferous Dwyka Group in the eastern region of the Karoo Basin, South Africa. [In:] M. Deynoux, J.M.G. Miller, E.W. Domack, N. Eyles, I.J. Fairchild & G.M. Young (Eds.): Earth´s Glacial Record. Cambridge University Press, Cambridge, pp. 60–69.
  • Von Brunn, V. 1996. The Dwyka Group in the northern part of Kwazulu/Natal, South Africa: sedimentation during late Palaeozoic deglaciation. Palaeogeography, Palaeoclimatology, Palaeoecology 125, 141–163.
  • Vrolijk, P.J., Urai, J.L. & Kettermann, M., 2016. Clay smear: Review of mechanisms and applications. Journal of Structural Geology 86, 95–152.
  • Whipple, K.X., Hancock, G.S. & Anderson, R.S., 2000. River incision into bedrock: Mechanics and relative efficacy of plucking, abrasion and cavitation. Bulletin of the Geological Society of America 112, 490–503.
  • Wilkins, S.J., Gross, M.R., Wacker, M., Eyal, Y. & Engelder, T., 2001. Faulted joints: kinematics, displacement – length scaling relations and criteria for their identification. Journal of Structural Geology 23, 315–327.
  • Woronko, B., 2016. Frost weathering versus glacial grinding in the micromorphology of quartz sand grains: Processes and geological implications. Sedimentary Geology 335, 103–119.
  • Yincan., Y. et al., 2017. Marine Geo-Hazards in China. China Ocean Press, Elsevier, pp. 193–194.
  • Zavala, C., 2019. The new knowledge is written on sedimentary rocks – a comment on Shanmugam’s paper “The hyperpycnite problem”. Journal of Palaeogeography 8, 23.
  • Zavala, C., 2020. Hyperpycnal (over density) flows and deposits. Journal of Palaeogeography 9, 17.
  • Zavala, C. & Arcuri, M., 2016. Intrabasinal and extrabasinal turbidites: origin and distinctive characteristics. Sedimentary Geology 337, 36–54.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-443cd2e1-cf93-446a-8367-8ab228e71e20
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.