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Cutting force sensors and neural networks have been used for the occupational 
safety of the drilling process. The drill conditions have been online classified 
into 3 categories: safe, caution, and danger. This approach can change the drill 
just before its failure. The inputs to neural networks include drill size, feed rate, 
spindle speed, and features that were extracted from drilling force measure-
ments. The outputs indicate the safety states. This detection system can reach 
a success rate of over 95%. Furthermore, the one misclassification during  
online tests was a one-step ahead pre-alarm that is acceptable from the safety 
and quality viewpoint. The developed online detection system is very robust 
and can be used in very complex manufacturing environments. 
 

drilling safety      online sensors      artificial neural networks 

 
 

1.  INTRODUCTION 
 
Workers consider their safety as the very first priority for their professional 
goals as shown in Table 1 (National Safety Workplace Institute [NSWI], 
1992). According to the research of the National Institute for Occupational  
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Safety and Health, one of the most important sources of fatal injuries is  
machines (Etherton & Myers, 1990). To avoid the safety problems in the 
manufacturing processes, a very reliable online prediction of tool conditions 
is necessary (Etherton & Myers, 1990; Millard, 1991; National Safety Coun-
cil, 1992; NSWI, 1992; Niu, Wong, Hong, & Liu, 1998; Roth & Pandit, 
1999; Sata, Matsushima, Nagakura, & Kono, 1973). An effective tool condi-
tion classification system can eliminate the risk of injury during machine  
operation. Successful online tool condition monitoring is also beneficial for 
productivity because tool failure accounts for 8% of machine tool down time 
(Altintas, 1992; Niu et al., 1998; Park & Ulsoy, 1993a, b; Purushothaman  
& Srinivasa, 1994; Subramanian & Cook, 1977). In addition, online diagno-
sis of tool condition can improve product quality and reduce product costs 
(Liu, Lee, & Wang, 2001; Liu, Wang, and Lee, 2000; Ramamurthi & Hough, 
1993; Rangwala & Dornfeld, 1990; Society of Manufacturing Engineers, 
1976, 1984; Xie, Bayoumi, & Kendall, 1990). 
 
 

TABLE 1.  Employee Goals for Corporate Performance, 1989 
(National Safety Workplace Institute, 1992) 

Rank Goal 

11 Safe working condition 
12 Ethical corporation behavior 
13 Good benefits 
14 Honest company communications 
15 Respectful treatment 
16 Good equipment and resources 
17 Competent top management 
18 Quality products and services 
19 Good pay 
10 Comfortable working condition 

 
 

The National Electronic Injury Surveillance System (NEISS) database 
provides the ranks of severity and frequency of injuries for different types of 
machines. The product of the sum of severity scores and the frequency of 
injury for the USA was computed for various kinds of machines in the 
NEISS database. The ranked order of the severity using this product as an 
index is shown in Table 2 (Etherton & Myers, 1990). 
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TABLE 2.  Rank Order of Severity by Frequency Products for Injuries Involving 
Manufacturing Machines Only, Hospital Emergency Rooms in the USA, 1985 
(Etherton & Myers, 1990) 

Manufacturing Machines Rank of Severity by Frequency Product 

Presses 1 
Shears, slitters, slicers 2 
Saws 3 
Buffers, grinders 4 
Drilling, boring, turning 5 
Rolls 6 
Tumblers, and so forth 7 
Casting, forging, welding 8 
Metal lathes 9 

 
 

The most common hazards in drilling operations are (National Safety 
Council, 1992) 

•  being struck by a broken drill; 
•  using dull drills; 
•  being struck by flying metal chips; 
•  contacting the rotating spindle or tool; 
•  being struck by insecurely clamped work; 
•  catching hair, clothing, or gloves in the revolving parts; 
•  sweeping chips, or trying to remove long, spiral chips, by hand. 

Because drilling operation is one of the major sources of fatal injuries as  
indicated in Table 2, the development of an online drill condition detection 
system is essential for occupational safety. 

In this work, an intelligent online drill failure detection system has been 
developed. Cutting forces, that is, thrust and torque, have been chosen for the 
monitoring of drill conditions because they are closely related to the drilling 
process and give very good indication of drill states. Cutting forces are very 
sensitive to the changes in drilling conditions. Back propagation neural net-
works have been used for the classification of drill states. The inputs have 
been extracted from cutting forces and the outputs are drill conditions. 

Researchers have developed drill condition classification systems (Barker, 
Klutke, & Hinich, 1993; Govekar & Grabec, 1994; Li, Lau, & Zhang, 1992; 
Liu & Anantharaman,1994; Liu, Chen, & Anantharaman, 1998; Liu, Chen, & 
Ko, 1994; Subramanian & Cook, 1977; Thangaraj & Wright, 1988). These 
systems can classify drills into two categories: usable or failure. The drawback 
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of this two-category classification is that it may be too late when the drill 
failure has been detected. In other words, an operator may still be exposed to  
a dangerous working environment. This kind of online drill condition classi-
fication is not satisfactory for occupational safety. In this work, three drill 
conditions, that is, safe, caution, and danger, are detected. This system can 
detect a potentially unsafe condition so that corrective actions can be taken in 
advance.  

In section 2, artificial neural networks are briefly described. In section 3, 
experimentation and feature extraction are discussed. The learning process of 
back propagation neural networks, online detection of drill conditions, and 
discussions are given in section 4. Section 5 gives the conclusions of this 
research. 

 
2.  NEURAL NETWORK 

 
Figure 1 shows the structure for a typical three-layered, back propagation 
neural network. The bottom layer of neurons is the input layer. The neurons 
in the input layer receive inputs. The neurons of the input layer send informa-
tion to the neurons in the hidden layer, which is between the input and output 
layers. The top layer is the output layer, which provides the output. Each  
 
 

Figure 1. The structure of an 11 × 10 × 1 back propagation neural network. 

OUTPUT: Drill State

OUTPUT LAYER

HIDDEN
LAYER

INPUT
LAYER

INPUTS: Drill Size, Feedrate, Spindle Speed, and Cutting Force Features
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neuron is connected to every neuron in the layer above and below, but they 
are not connected to other neurons in the same layer (He, Zhang, Lee, and 
Liu, 2001; Kumagai, Hozian, & Kirkland, 2000; Liu, 1998). 

All the raw data are normalized between 0.1 and 0.9 as shown in the  
following equation: 

�����U�U
UU

���
D PLQL

PLQPD[

L +−
−

=                                 (1) 

 
where ai is the normalized data, rmax and rmin are the maximum and minimum 
values of the raw data, respectively. And ri is the i-th raw input data. 

The outputs of neurons on the input layer reach the j-th neuron on the next 
layer and become its input as follows: 
 

∑
=

⋅=
Q

�L

MLLM �:D6                                           (2) 

 
where ai is the output value from the i-th neuron of the input layer and n is 
the number of neurons of the input layer. And wji is the weight between the  
i-th neuron on the input layer and the j-th neuron on the next layer. 

The output of the j-th neuron is shown below in Equation 3: 
 

�
�:D�H[S�

�
�I�6

MLL

M

⋅∑−+
=                              (3) 

 
The neuron on the output layer computes its output. In the learning process, 
the computed output is compared with the desired output. The difference 
propagates backwards. Then the weights of all of the interconnections are 
adjusted (Sereno, 1993). The error of the j-th neuron on the output layer  
is obtained with 

/j  = (dj – aj)  ·  f '(sj),                                      (4) 
 
where dj is the desired output value for the j-th neuron, aj is the computed 
output value for the j-th neuron, f´(sj) is the derivative of the sigmoid function f 
with respect to sj, and sj is the weighted sum of inputs to the j-th neuron. The 
error of the j-th neuron on the hidden layer is calculated with Equation 5: 
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The back propagation rule updates the weights according to Equation 6: 
 

L�M
ML

D>;�~ ⋅⋅=                                           (6) 

 
ZKHUH û:ji is the change of the weight from the i-th neuron to the j-th  
QHXURQ� . LV WKH OHDUning rate. 

Smoothing technique can be used to improve the learning process. It is 
expressed by Equation 7: 
 

��~D>;����~
ROG

ML
LM

QHZ

ML
⋅+⋅⋅−= ��                         (7) 

 
The error calculation and weight updating process continue until the neural 
network computes an output that is close to the desired output. Once the 
learning process is completed, the neural network can be utilized for online 
applications. 

 
3.  EXPERIMENTAL PROCEDURE AND FEATURE 

EXTRACTION 

 
3.1.  Experimental Setup 

 
The drilling experiments were carried out on a Bridgeport (USA) 3-axis CNC 
milling machine. A Kistler (Switzerland) 9271A piezoelectric dynamometer 
was used to measure the cutting forces, namely, thrust and torque. Two  
Kistler model 5004 charge amplifiers with a 470 Hz anti-aliasing low pass 
 

Figure 2. A schematic diagram of the experimental setup. 

Kistler 5004
Charge Amplifier

(with Low Pass Filter)

Kistler 5004
Charge Amplifier

(with Low Pass Filter)

Thrust

Torque

Spindle

Workpiece

Dynamometer

Nicolet 4094
Oscilloscope
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filter were used for the amplification of the measured signals. Then the signals 
were input and displayed on a Nicolet (USA) model 4094 oscilloscope. The 
sampling frequency of the measurements was 1000 Hz, which avoids alias-
ing. The schematic diagram for this experimental setup is shown in Figure 2. 

The work material used in this work was 303 stainless steel. The size, 
hardness, and chemical composition of the work material are described  
in Table 3. All the drilling experiments were conducted until the drill was 
broken or completely worn-out. High speed steel (HSS) twist drills were used 
during the tests. Three different drill sizes, three different feedrates, and four 
different spindle speeds were used in this experiment. 

 
TABLE 3. Size, Hardness, and Chemical Composition of the Work Material 

Work material 303 stainless steel 
Hardness 175 BHN 
Composition Carbon  

Chromium  
Manganese  
Molybdenum  
Nickel 
Phosphorus 
Silicon 
Sulfur 

0.15% 
18% 
2% 
0.6% 
9% 
0.2% 
1% 
0.15 % 

Length 304.8 mm (12.0 in.) 
Width  25.4 mm (1.0 in.) 
Height 25.4 mm (1.0 in.) 

 
 

Data sets from the drilling experiments were utilized for the training  
of neural networks. Then, online tests were performed for the classification 
of drill conditions. Table 4 gives a summary of various drilling experiments. 

 
TABLE 4. Summary of Drilling Experiments 

Purpose 
Drill Size, 
in mm (in.) 

Feed Rate, 
in mm/s (in./min) 

Spindle Speed, 
in rpm 

Number of 
Holes Drilled 

Learning process 6.350 (1/4) 
4.762 (3/16) 

0.330 (7.8) 
0.305 (7.2) 

750 
1030 

13 
6 

Online tests 6.350 (1/4) 
3.175 (1/8) 

0.330 (7.8) 
0.228 (5.4) 

900 
1800 

14 
10 
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3.2.  Feature Extraction 
 
In order to enhance the reliability of the online sensory system, it is essential 
to select the best combination of parameters. Thrust and torque give very 
important information about drill conditions. Therefore, online drill failure 
detection is possible using thrust and torque signals. Signal processing tech-
niques were employed to obtain various parameters from thrust and torque 
signals. The features extracted from thrust and torque signals are described in 
the following: 

1. Average thrust (or torque) 
 This value is defined by 

�

Q

7

7

Q

�L

L∑
==                                                  (8) 

 
where T  is the average value of thrust (or torque), Ti is the value of the  
i-th thrust (or torque), n is the number of thrust (or torque) values. 

2. Peak thrust (or torque) 
Peak of thrust (or torque) is simply the maximum value of each thrust  
(or torque) measurement in the drilling experiments. 

3. RMS thrust (or torque) 
 This value indicates the power consumption during drilling and is defined by 
 

�

Q

7

506

Q

�L

�

L∑
==                                             (9) 

 
4. Area under thrust (or torque) versus time curve 

This value is integral of the area under thrust (or torque) curve with re-
spect to time and is very sensitive to the change of drill condition. This is 
obtained with 

∫=
W

�

7GW�$UHD                                           (10) 

 
 where T is the thrust (or torque), t is the time taken for each hole drilled. 

In this work, a total of 11 features, including drill size, feed rate, spindle 
speed, thrust and torque are input to neural networks. Table 5 shows all  
11 features for the classification of drill conditions. 
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TABLE 5.  List of 11 Features for Online Detection of Drill Conditions 

Number Feature 

11 Drill size 
12 Feedrate 
13 Spindle speed 
14 Average thrust 
15 RMS thrust 
16 Peak thrust 
17 Thrust versus time area 
18 Average torque 
19 RMS torque 
10  Peak torque 
11  Torque versus time area 

 
 

4.  ONLINE DETECTION OF DRILL CONDITIONS 
 

Online detection of drill conditions has been performed. Various structures of 
neural networks have been used. Neural networks have been trained in the 
learning process. They are then used for online tests. The effects of different 
parameters, such as weights, learning rates, and smoothing factors on the 
performance of an online drill failure detection system have been evaluated 
and compared. 
 
4.1.  Learning Process 
 
Two data sets were used for the training of neural networks. The drill size, 
feedrate, and spindle speed of these two data sets were quite different. Two 
drill sizes, 6.350 mm (1/4 in.) and 4.762 mm (3/16 in.), were used. The first 
13 training data were obtained with a spindle speed of 750 rpm and a feedrate 
of 0.330 mm/s (7.8 in./min). Another 6 training data were taken with  
the drilling conditions: spindle speed 1030 rpm and feedrate 0.305 mm/s  
(7.2 in./min). The raw data for the learning process are shown in Table 6. 

All the numerical data were normalized to be between 0.1 and 0.9. They 
were then put into neural networks. The learning rate used was 0.9. The  
initial weights were randomly assigned between –0.8 and 0.8. No smoothing 
factor was used. The learning process stopped after 15,500 iterations. 

The neural networks’ outputs indicate the drill states. Drill states are  
classified into three categories according to their output values. The three 
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categories and the desired output values in the learning process are shown  
in Table 7. Category I is the safe state. The drill is usable and safe. It defi-
nitely offers safe conditions for the operator. Category II is the caution state. 
When the drill was used to make the penultimate hole, it was chosen as the 
caution state. It indicates that the machine should be stopped and the drill 
should be replaced even though the drill is still usable. Category III is the 
danger state. It shows that the drill is about to break or worn out as indicated 
by loud noise or inability to cut. 

 
 

TABLE 7.  Assigned Output Values for Different Drill States in the Learning Process 

Category Drill State Desired Output Value 

I safe 0.234a 
I caution 0.501b 
III danger 0.768c 

Notes. athe mid-value of 0.100–0.367 for category I, b the mid-value of 0.368–0.634 for 
category II, cthe mid-value of 0.635–0.900 for category III. 

 
 

4.2.  Online Detection of Drill Conditions 
 

Once neural networks have been trained, they can be applied for online tests. 
The online test conditions are very different from the drilling conditions in the 
learning process so as to evaluate the generalization capability of neural net-
works. Two tests with different drill sizes and drilling conditions were per-
formed. For the first 14 tests, the drilling experiments were conducted using  
a 6.350 mm (1/4 in.) diameter drill with a spindle speed of 900 rpm and  
a feedrate of 0.330 mm/s (7.8 in./min). For another 10 tests, the drilling  
operations were performed using a 3.175 mm (1/8 in.) diameter drill with  
a spindle speed of 1800 rpm and a feedrate of 0.228 mm/s (5.4 in./min). The 
drill states were classified online into three categories according to the  
following output values: 

•  If the output value is in the range of 0.100–0.367, then the drill belongs to 
Category ISafe; 

•  If the output value is in the range of 0.368–0.634, then the drill belongs to 
Category IICaution; 

•  If the output value is in the range of 0.635–0.900, then the drill belongs to 
Category III Danger. 
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The raw data for the online tests are shown in Table 8. Various neural net-
work structures have been used during those tests. The outputs of several 
neural network structures are shown in Table 9. The comparison of the  
success rate of all the neural networks used in the online tests is shown in 
Table 10 and Figure 3. 

 
 

TABLE 10.  Comparison of the Success Rate of Different Neural Network Structures 
for Online Tests 

Network structure 11 × 2 × 1 11 × 4 × 1 11 × 6 × 1 11 × 8 × 1 11 × 10 × 1 11 × 12 × 1 
Success rate (%) 87.5 91.7 87.5 91.7 95.8 87.5 
       
Network structure 11 × 14 × 1 11 × 16 × 1 11 × 18 × 1 11 × 20 × 1 11 × 22 × 1 11 × 24 × 1 
Success rate (%) 91.7 87.5 87.5 91.7 91.7 91.7 
       
Network structure 11 × 26 × 1 11 × 28 × 1 11 × 30 × 1 11 × 32 × 1 11 × 34 × 1 11 × 36 × 1 
Success rate (%) 95.8 91.7 95.8 91.7 95.8 91.7 
       
Network structure 11 × 38 × 1 11 × 40 × 1 11 × 50 × 1 11 × 60 × 1 11 × 70 × 1 11 × 100 × 1 
Success rate (%) 95.8 95.8 91.7 91.7 83.3 91.7 

Notes. Initial weight vector (W): randomly assigned between –0.8 and 0.8; learning rate: 0.9; 
trDLQLQJ LWHUDWLRQV� ������� VPRRWKLQJ IDFWRU ���� �� 

 

Figure 3.  Comparison of the success rate of different neural network structures. 
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The neural network structure of 11 × 10 × 1 yields the best result. Online 
drill condition classification can achieve a success rate of over 95%. Fur-
thermore, the one misclassification is a one-step ahead pre-alarm of drill fail-
ure, which is acceptable both from an operational safety and product quality 
viewpoint. 

 
4.3.  Comparison and Discussions 

 
After the 11 × 10 × 1 neural network has been selected as the best neural 
network structure for the online drill condition detection, the influence of the 
LQLWLDO ZHLJKW YHFWRU �:�� WKH OHDUQLQJ UDWH �.�� DQG WKH VPRRWKLQJ IDFWRU ���

on its performance has been investigated. In the learning process, the value of 
the weights were randomly assigned between –0.1 and 0.1, between –0.2 and 
0.2, and so forth. The learning rate was assigned to be 0.1, 0.15, 0.2, and so 
forth. The smoothing factor was assigned to be 0.1, 0.2, 0.3, and so forth. The 
success rate versus the initial weight vector, the learning rate, and the 
smoothing factor for online tests using an 11 × 10 × 1 neural network are 
shown in Tables 11, 12 and 13, respectively. They are also shown in Figures 4, 
5 and 6, respectively. The 11 × 10 × 1 neural network has the best perform-
ance when the initial weights are randomly assigned from –0.8 to 0.8, from –
0.9 to 0.9, from –1.0 to 1.0, or from –1.1 to 1.1.  This neural network has the 
best performance when the learning rate is 0.85 or 0.9.  Also, it has the best 
performance when the smoothing factor is 0, 0.8, or 0.9. 

 
 

TABLE 11.  The Success Rate of an 11 × 10 × 1 Neural Network With Various Initial 
Weights (W) for Online Tests 

Initial weight (W) –0.1– 0.1 –0.2–0.2 –0.3–0.3 –0.4–0.4 –0.5–0.5 
Success rate (%) 83.3 83.3 87.5 87.5 87.5 
      
Initial weight (W) –0.6–0.6 –0.7–0.7 –0.8–0.8 –0.9–0.9 –1.0–1.0 
Success rate (%) 87.5 87.5 95.8 95.8 95.8 
      
Initial weight (W) –1.1–1.1 –1.2–1.2 –1.3–1.3 –1.4–1.4 –1.5–1.5 
Success rate (%) 95.8 91.7 91.7 91.7 91.7 
      
Initial weight (W) –2.0–2.0 –3.0–3.0 –4.0–4.0   
Success rate (%) 91.7 87.5 58.3   

Notes. Network structure: 11 × 10 × �� OHDUQLQJ UDWH �.�� ���� WUDLQLQJ LWHUDWLRQ� ������� VPRRWhing 
IDFWRU ���� �� 
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TABLE 12.  The Success Rate of an 11 × 10 × 1 Neural Network With Various Learning 
5DWHV �.� IRU 2Qline Tests 

Learning rDWH �.� .  ���0 .  ���� .  ���0 .  ���� .  ���0 .   0.35 
Success rate (%) 62.5 62.5 62.5 62.5 62.5 62.5 
       
Learning rDWH �.� .  ���0 .  ���� .  ���0 .  ���� .  ���0 .  ���� 
Success rate (%) 62.5 75.0 87.5 87.5 87.5 91.7 
       
Learning rDWH �.� .  ���0 .  ���� .  ���0 .  ���� .  ���0 . = 0.95 
Success rate (%) 91.7 91.7 91.7 95.8 95.8 91.7 
       
Learning rDWH �.� .  ���0 .  ���� .  ���0 .  ���� .  ���0  
Success rate (%) 91.7 91.7 91.7 91.7 91.7  

Notes. Network structure: 11 × 10 × 1; weight (W): randomly assigned between –0.8 and 0.8; 
WUDLQLQJ LWHUDWLRQ� ������� VPRRWKLQJ IDFWRU ���� �� 

 

TABLE 13. The Success Rate of an 11 × 10 × 1 Neural Network With Various 
6PRRWKLQJ )DFWRUV ��� IRU 2Qline Tests 

Smoothing fDFWRU ��� �  � �  ��� �  ��� �  ��� �  ��� 
Success rate (%) 95.8 91.7 91.7 91.7 91.7 
      
Smoothing fDFWRU ��� �  ��� �  ��� �  ��� �  ��� �  ��� 
Success rate (%) 91.7 91.7 91.7 95.8 95.8 

Notes. Network structure: 11 × 10 × 1; weight (W): randomly assigned between –0.8 and 0.8; 
training iteration: 15,500; leaUQLQJ UDWH �.�� ���� 

Figure 4. The success rate of an 11 × 10 × 1 neural network with various initial 
weights (W) for online tests. 
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Figure 5. The success rate of an 11 × 10 × 1 neural network with various learning 
rates (α) for online tests. 

 

Figure 6. The success rate of an 11 × 10 × 1 neural network with various smoothing 
factors (α) for online tests. 

 
5.  CONCLUSIONS 

 
Based on the descriptions in previous sections, the following conclusions can be 
drawn: 

1. Neural networks have been used successfully for the online classification 
of drill conditions into three categories: safe, caution, and danger. This  
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3-category classification can guarantee drill change before drill failure 
happens. Therefore, it is very beneficial to occupational safety and product 
quality. 

2. The success rate of the online detection system depends on the structure of 
neural networks. An increase in the number of neurons does not necessarily 
increase the success rate. 

3. An 11 × 10 × 1 neural network yields the best results. It can reach a  
success rate of over 95% for online recognition of drill states. Further-
more, the only misclassification is a one-step ahead pre-alarm, which  
is acceptable from an operational safety and product quality viewpoint.  
In other words, the developed online drill condition detection system  
is exceedingly reliable. 

4. The values of initial weights, learning rates, and smoothing factors influ-
ence the performance of the online drill detection system. Various values 
have been tested in order to achieve a very high reliability for the online 
drill condition detection system. 

5. The drill sizes and drilling condition during the online tests were very  
different from those in the learning process. This indicates that neural 
networks have shown the capability of generalization. Therefore, the  
developed online drill condition detection system is very robust and can be 
utilized in very complex manufacturing environments. In summary, this 
research contributes greatly to the occupational safety of the drilling  
operation. 
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