Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This research investigates the enhancement of Artificial Immune Systems (AIS) for solving the Traveling Salesman Problem (TSP) through hybridization with Neighborhood Improvement (NI) and parameter fine-tuning. Two main experiments were conducted: Experiment A identified the optimal integration points for NI within AIS, revealing that position 2 (AIS+NIpos2) improved solution quality by an average of 27.78% compared to other positions. Experiment B benchmarked AIS performance with various enhancement techniques. Using symmetric and asymmetric TSP datasets, the results showed that integrating NI at strategic points and fine-tuning parameters boosted AIS performance by up to 46.27% in some cases. The hybrid and fine-tuned version of AIS (AIS-th) consistently provided the best solution quality, with up to a 50.36% improvement, though it required more computational time. These findings emphasize the importance of strategic combinations and fine-tuning for creating effective optimization algorithms.
Czasopismo
Rocznik
Tom
Strony
117--137
Opis fizyczny
Bibliogr. 49 poz., fig., tab.
Twórcy
autor
- Kasetsart University Kamphaeng Saen Campus, Faculty of Liberal Arts and Science, Department of Computational Science and Digital Technology
autor
- Kasetsart University Kamphaeng Saen Campus, Faculty of Liberal Arts and Science, Department of Computational Science and Digital Technology
autor
- IPB University, Faculty of Fisheries and Marine Sciences, Department of Marine Sciences and Technology, Indonesia
Bibliografia
- [1] Adenso-Díaz, B., & Laguna, M. (2006). Fine-Tuning of algorithms using fractional experimental designs and local search. Operations Research, 54(1), 99-114. https://doi.org/10.1287/opre.1050.0243
- [2] Akhand, M. A. H., Akter, S., & Rashid, M. A. (2014). Velocity Tentative Particle Swarm Optimization to solve TSP. 2013 International Conference on Electrical Information and Communication Technology (EICT) (pp. 1-6). IEEE. https://doi.org/10.1109/EICT.2014.6777868
- [3] Akram, M., & Habib, A. (2023). Hybridizing simulated annealing and genetic algorithms with Pythagorean fuzzy uncertainty for Traveling Salesman Problem optimization. Journal of Applied Mathematics and Computing, 69, 4451-4497. https://doi.org/10.1007/s12190-023-01935-y
- [4] Blum, C., & Roli, A. (2003). Metaheuristics in combinatorial optimization: Overview and conceptual comparison. ACM Computing Surveys, 35(3), 268-308. https://doi.org/10.1145/937503.937505
- [5] Boryczka, U., & Szwarc, K. (2019). The Harmony Search algorithm with additional improvement of harmony memory for Asymmetric Traveling Salesman Problem. Expert Systems with Applications, 122, 43-53. https://doi.org/10.1016/j.eswa.2018.12.044
- [6] Braun, H. (1991). On solving travelling salesman problems by genetic algorithms. In H.-P. Schwefel & R. Männer (Eds.), Parallel Problem Solving from Nature (Vol. 496, pp. 129-133). Springer-Verlag. https://doi.org/10.1007/BFb0029743
- [7] Burke, E. K., Cowling, P. I., & Keuthen, R. (2001). Effective local and guided variable neighbourhood search methods for the asymmetric travelling salesman problem. In E. J. W. Boers (Ed.), Applications of Evolutionary Computing (Vol. 2037, pp. 203-212). Springer Berlin Heidelberg. https://doi.org/10.1007/3-540-45365-2_21
- [8] Burnet, F. M. (1959). The clonal selection theory of acquired immunity; the Abraham Flexner lectures of Vanderbilt University. Cambridge University Press.
- [9] Campuzano, G., Obreque, C., & Aguayo, M. M. (2020). Accelerating the Miller–Tucker–Zemlin model for the asymmetric Traveling Salesman Problem. Expert Systems with Applications, 148, 113229. https://doi.org/10.1016/j.eswa.2020.113229
- [10] Chandrasekaran, M., Asokan, P., Kumanan, S., Balamurugan, T., & Nickolas, S. (2006). Solving job shop scheduling problems using artificial immune system. International Journal of Advanced Manufacturing Technology, 31, 580-593. https://doi.org/10.1007/s00170-005-0226-3
- [11] Chen, S.-M., & Chien, C.-Y. (2011). Solving the Traveling Salesman Problem based on the genetic simulated annealing ant colony system with particle swarm optimization techniques. Expert Systems with Applications, 38(12), 14439-14450. https://doi.org/10.1016/j.eswa.2011.04.163
- [12] De Castro, L., & Timmis, J. (2002). Artificial immune systems: A new computational intelligence approach. Springer.
- [13] De Castro, L., & Von Zuben, F. (2001). The clonal selection algorithm with engineering applications. Workshop Proceedings of GECCO (pp. 36-37).
- [14] Deng, W., Chen, R., He, B., Liu, Y., Yin, L., & Guo, J. (2012). A novel two-stage hybrid swarm intelligence optimization algorithm and application. Soft Computing, 16, 1707-1722. https://doi.org/10.1007/s00500-012-0855-z
- [15] Desrochers, M., & Laporte, G. (1991). Improvements and extensions to the Miller-Tucker-Zemlin subtour elimination constraints. Operations Research Letters, 10(1), 27-36. https://doi.org/10.1016/0167-6377(91)90083-2
- [16] Dorigo, M., & Gambardella, L. M. (1997). Ant colonies for the travelling salesman problem. Biosystems, 43(2), 73-81. https://doi.org/10.1016/S0303-2647(97)01708-5
- [17] Dorigo, M., & Stützle, T. (2004). Ant Colony Optimization. MIT Press.
- [18] Eiben, A. E., & Smit, S. K. (2011). Parameter tuning for configuring and analyzing evolutionary algorithms. Swarm and Evolutionary Computation, 1(1), 19-31. https://doi.org/10.1016/j.swevo.2011.02.001
- [19] Engin, O., & Döyen, A. (2004). Artificial immune systems and applications in industrial problems. Journal of Science, 17(1), 71-84.
- [20] Freitas, A. A., & Timmis, J. (2003). Revisiting the foundations of artificial immune systems: A problem-oriented perspective. In J. Timmis, P. J. Bentley, & E. Hart (Eds.), Artificial Immune Systems (Vol. 2787, pp. 229-241). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-45192-1_22
- [21] Garrett, S. M. (2005). How do we evaluate artificial immune systems? Evolutionary Computation, 13(2), 145-177. https://doi.org/10.1162/1063656054088512
- [22] Glover, F. W. (1989). Tabu Search - Part I. ORSA Journal on Computing, 1(3), 190-206. https://doi.org/10.1287/ijoc.1.3.190
- [23] Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley Longman Publishing Co., Inc.
- [24] Gouveia, L., & Pires, J. M. (1999). The asymmetric travelling salesman problem and a reformulation of the Miller-Tucker-Zemlin constraints. European Journal of Operational Research, 112(1), 134-146. https://doi.org/10.1016/S0377-2217(97)00358-5
- [25] Greensmith, J., Whitbrook, A., & Aickelin, U. (2010). Artificial immune systems. In M. Gendreau & J.-Y. Potvin (Eds.), Handbook of Metaheuristics (Vol. 146, pp. 421–448). Springer US. https://doi.org/10.1007/978-1-4419-1665-5_14
- [26] Hart, E., & Timmis, J. (2008). Application areas of AIS: The past, the present and the future. Applied Soft Computing, 8(1), 191-201. https://doi.org/10.1016/j.asoc.2006.12.004
- [27] Huang, C., Li, Y., & Yao, X. (2019). A survey of automatic parameter tuning methods for metaheuristics. IEEE Transactions on Evolutionary Computation, 24(2), 201-216. https://doi.org/10.1109/TEVC.2019.2921598
- [28] Joy, G., Huyck, C., & Yang, X.-S. (2023). Review of parameter tuning methods for nature-inspired algorithms. In X.-S. Yang (Ed.), Benchmarks and Hybrid Algorithms in Optimization and Applications (pp. 33–47). Springer Nature Singapore. https://doi.org/10.1007/978-981-99-3970-1_3
- [29] Kang-Ping, W., Lan, H., Chun-Guang, Z., & Wei, P. (2003). Particle swarm optimization for Traveling Salesman Problem. 2003 International Conference on Machine Learning and Cybernetics (pp. 1583-1585). IEEE. https://doi.org/10.1109/ICMLC.2003.1259748
- [30] Karaboga, D., & Gorkemli, B. (2011). A combinatorial Artificial Bee Colony algorithm for Traveling Salesman Problem. 2011 International Symposium on Innovations in Intelligent Systems and Applications (pp. 50-53). IEEE. https://doi.org/10.1109/INISTA.2011.5946125
- [31] Eberhart, R. C., Shi, Y., & Kennedy, J. (2001). Swarm intelligence. Morgan Kaufmann Publishers Inc.
- [32] Khan, I., & Maiti, M. K. (2019). A swap sequence based Artificial Bee Colony algorithm for Traveling Salesman Problem. Swarm and Evolutionary Computation, 44, 428-438. https://doi.org/10.1016/j.swevo.2018.05.006
- [33] Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by Simulated Annealing. Science, 220(4598), 671-680. https://doi.org/10.1126/science.220.4598.671
- [34] Krishna, M., Panda, N., & Majhi, S. (2021). Solving Traveling Salesman Problem using Hybridization of Rider Optimization and Spotted Hyena Optimization Algorithm. Expert Systems with Applications, 183, 115353. https://doi.org/10.1016/j.eswa.2021.115353
- [35] Laporte, G. (1992). The Traveling Salesman Problem: An overview of exact and approximate algorithms. European Journal of Operational Research, 59(2), 231-247. https://doi.org/10.1016/0377-2217(92)90138-Y
- [36] Laporte, G., & Nobert, Y. (1980). A Cutting Planes Algorithm for the m-Salesmen Problem. The Journal of the Operational Research Society, 31(11), 1017-1023. https://doi.org/10.2307/2581282
- [37] Larrañaga, P., Kuijpers, C. M. H., Murga, R. H., Inza, I., & Dizdarevic, S. (1999). Genetic algorithms for the Travelling Salesman Problem: A Review of representations and operators. Artificial Intelligence Review, 13, 129-170. https://doi.org/10.1023/A:1006529012972
- [38] Lawler, E. L. (1985). The Travelling Salesman Problem: A Guided Tour of Combinatorial Optimization. John Wiley & Sons.
- [39] Li, M., Ma, J., Zhang, Y., Zhou, H., & Liu, J. (2015). Firefly algorithm solving multiple Traveling Salesman Problem. Journal of Computational and Theoretical Nanoscience, 12(7), 1277-1281. https://doi.org/10.1166/jctn.2015.3886
- [40] Miller, C. E., Tucker, A. W., & Zemlin, R. A. (1960). Integer programming formulation of Traveling Salesman Problems. Journal of the ACM, 7(4), 326-329. https://doi.org/10.1145/321043.321046
- [41] Nagata, Y., & Soler, D. (2012). A new genetic algorithm for the asymmetric Traveling Salesman Problem. Expert Systems with Applications, 39(10), 8947-8953. https://doi.org/10.1016/j.eswa.2012.02.029
- [42] Osaba, E., Ser, J. D., Sadollah, A., Bilbao, M. N., & Camacho, D. (2018). A discrete water cycle algorithm for solving the symmetric and asymmetric Traveling Salesman Problem. Applied Soft Computing, 71, 277-290. https://doi.org/10.1016/j.asoc.2018.06.047
- [43] Osaba, E., Yang, X.-S., Diaz, F., Lopez-Garcia, P., & Carballedo, R. (2016). An improved discrete bat algorithm for symmetric and asymmetric Traveling Salesman Problems. Engineering Applications of Artificial Intelligence, 48, 59-71. https://doi.org/10.1016/j.engappai.2015.10.006
- [44] Panwar, K., & Deep, K. (2021). Discrete Grey Wolf Optimizer for symmetric Traveling Salesman Problem. Applied Soft Computing, 105, 107298. https://doi.org/10.1016/j.asoc.2021.107298
- [45] Reinelt, G. (1991). TSPLIB - A Traveling Salesman Problem Library. ORSA Journal on Computing, 3(4), 267-384. https://doi.org/10.1287/ijoc.3.4.376
- [46] Ruan, D. (1997). Intelligent hybrid systems : fuzzy logic, neural networks, and genetic algorithms. Springer.
- [47] Sengupta, S., Basak, S., & Peters, R. A. (2019). Particle swarm optimization: A survey of historical and recent developments with hybridization perspectives. Machine Learning and Knowledge Extraction, 1(1), 157-191. https://doi.org/10.3390/make1010010
- [48] Yang, X.-S. (2023). Nature-Inspired algorithms in optimization: Introduction, hybridization, and insights. In X.-S. Yang (Ed.), Benchmarks and Hybrid Algorithms in Optimization and Applications (pp. 1–17). Springer Nature Singapore. https://doi.org/10.1007/978-981-99-3970-1_1
- [49] Zhang, T., Zhou, Y., Zhou, G., Deng, W., & Luo, Q. (2023). Discrete Mayfly Algorithm for spherical asymmetric Traveling Salesman Problem. Expert Systems with Applications, 221, 119765. https://doi.org/10.1016/j.eswa.2023.119765
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-443a3b75-a85a-4977-8177-65fd8638e88f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.