Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The exact analytical expressions for the time-dependent cross-correlations of the translational and rotational Brownian displacements of a particle with arbitrary shape were derived by us in [3, 4]. They are in this work applied to construct a method to analyze the Brownian motion of a particle of an arbitrary shape, and to extract accurately the self-diffusion matrix from the measurements of the crosscorrelations, which in turn allows to gain some information on the particle structure. As an example, we apply our new method to analyze the experimental results of D. J. Kraft et al. for the micrometer-sized aggregates of the beads [8]. We explicitly demonstrate that our procedure, based on the measurements of the time-dependent cross-correlations in the whole range of times, allows to determine the self-diffusion (or alternatively the friction matrix) with a much higher precision than the method based only on their initial slopes. Therefore, the analytical time-dependence of the cross-correlations serves as a useful tool to extract information about particle structure from trajectory measurements.
Czasopismo
Rocznik
Tom
Strony
257--267
Opis fizyczny
Bibliogr. 12 poz., rys. kolor.
Twórcy
autor
- Institute of Theoretical Physics Faculty of Physics University of Warsaw Pasteura 5 02-093 Warsaw, Poland
autor
- Institute of Fundamental Technological Research Polish Academy of Sciences Pawińskiego 5B 02-106 Warsaw, Poland
autor
- Institute of Fundamental Technological Research Polish Academy of Sciences Pawińskiego 5B 02-106 Warsaw, Poland
Bibliografia
- 1. N. van Kampen, Stochastic Processes in Physics and Chemistry, 3rd ed., North-Holland, 2007.
- 2. B. Cichocki, M.L. Ekiel-Jeżewska, E. Wajnryb, Communication: translational Brownian motion for particles of arbitrary shape, J. Chem. Phys., 136, 071102-1-4, 2012.
- 3. B. Cichocki, M.L. Ekiel-Jeżewska, E. Wajnryb, Brownian motion of a particle with arbitrary shape, J. Chem. Phys., 142, 214902-1-16, 2015.
- 4. B. Cichocki, M.L. Ekiel-Jeżewska, E. Wajnryb, Note: Brownian motion of colloidal particles of arbitrary shape, J. Chem. Phys., 144, 076101-1-2, 2016.
- 5. A. Chakrabarty, A. Konya, F. Wang, J.V. Selinger, K. Sun, Q.-H. Wei, Brownian motion of arbitrary shaped particles in two dimensions, Langmuir, 30, 13844–13853, 2014.
- 6. A. Wang, T.G. Dicasemiduk, J. Fung, S. Razavi, I. Kretzschmar, K. Chaudhary, V.N. Manoharan, Using the discrete dipole approximation and holographic microscopy to measyre rotational dynamics of non-spherical colloidal particles, J. Quant. Spectrosc. Radiat. Transfer, 146, 499–509, 2014.
- 7. L. Koens, E. Lauga, The passive diffusion of Leptospira interrogans, Phys. Biol., 11, 066008, p. 12, 2014.
- 8. D.J. Kraft, R. Wittkowski, B. ten Hagen, K.V. Edmond, D.J. Pine, H. Löwen, Brownian motion and the hydrodynamic friction tensor for colloidal particles of complex shape, Phys. Rev. E, 88, 050301, 2013.
- 9. J. Garcia de la Torre, B. Carrasco, Hydrodynamic properties of rigid macromolecules composed of ellipsoidal and cyryndrical subunits, Biopolimers 63, 3, 163–167, 2002; see also: J.G. de la Torre, The HYDRO suite of programs for rigid-particle hydrodynamics, leonardo.inf.um.es/macromol/programs/hydrosuite.pdf.
- 10. S. Kim, S.J. Karrila, Microhydrodynamics: Principles and Selected Applications, Butterworth-Heinemann, Boston, 1991.
- 11. R.B. Jones, P.N. Pusey, Dynamics of suspended colloidal spheres, Annu. Rev. Phys. Chem., 42, 137–169, 1991.
- 12. B. Cichocki, M.L. Ekiel-Jeżewska, E. Wajnryb, Lubrication corrections for three-particle contribution to short-time self-diffusion coefficients in colloidal dispersions, J. Chem. Phys., 111, 3265 (1999).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4432de53-0203-4c0c-bf44-5780511e8091