PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessment of evidence based climate variability in Bhagirathi sub basin of India: a geostatistical analysis

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Climate variability analysis is essential for predicting the behavior of various extreme weather events and making communities resilient. Notwithstanding the profound concerns, climate variability assessment faces numerous challenges due to inadequate and sometimes unavailability of data at spatiotemporal scales. This study makes an attempt to analyse climate variability in the Bhagirathi Sub-basin of India. Six meteorological variables were analysed from fourteen weather stations located in the Sub-basin during 1968–2017. Modified Mann–Kendall test was employed to ascertain the trends in meteorological variables. One-way ANOVA was used to assess the relationship between and within the variables. A total of 432 households were selected for reaffirming climate variability and impact on landscape. Significant trends were detected in highest maximum, mean maximum (Mmax) and mean minimum (Mmin) temperatures, relative humidity (Rh), rainfall and vapour pressure (Vp) at annual and seasonal scales. Stations located in eastern and deltaic Sub-basins registered varying trends in these meteorological variables due to anthropogenic activities-induced land use changes. ANOVA revealed a robust relation among rainfall, Vp, Mmin and Mmax. Perceptions of the sampled households revealed that climate variability has considerably affected food intensity, vegetation, soil, water resources and agricultural pattern. We find modified Mann– Kendall method effective in analysing climate variability in the Sub-basin. Thus, this method can be utilized for effective analysis of climate variability at spatial scales in geographical regions.
Czasopismo
Rocznik
Strony
445--463
Opis fizyczny
Bibliogr. 86 poz.
Twórcy
autor
  • Department of Geography, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, India
  • Department of Geography, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, India
autor
  • Department of Geography, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, India
  • Department of Geography, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, India
autor
  • Department of Geography, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, India
autor
  • Department of Geography, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, India
  • School of Environment, Education and Development (SEED), University of Manchester, Manchester, England, UK
Bibliografia
  • 1. Abaya SW, Mandere NM, Winqvist N (2011) Health officials’ perceptions of and preparedness for the impacts of climate variability on human health in the Somali region of Ethiopia. Mitig Adapt Strateg Global Change 16(5):585–596. https://doi.org/10.1007/s11027-011-9282-1
  • 2. Asfaw A, Simane B, Hassen A, Bantider A (2018) Variability and time series trend analysis of rainfall and temperature in northcentral Ethiopia: a case study in Woleka sub-basin. Weather Clim Extremes 19:29–41. https://doi.org/10.1016/j.wace.2017.12.002
  • 3. Banerjee S, Mukherjee A, Sattar A, Biswas B (2015) Change detection of annual temperature and rainfall in Kalimpong station under Hill Zone of West Bengal. Indian J Hill Farm 28(2):81–84
  • 4. Basak P (2014) Variability of south-west monsoon rainfall in West Bengal: an application of principal component analysis. Mausam 65(4):559–568
  • 5. Blain GC (2013) The modified Mann-Kendall test: on the performance of three variance correction approaches. Bragantia 72(4):416–425. https://doi.org/10.1590/brag.2013.045
  • 6. Bolin B (2007) A history of the science and politics of climate change: the role of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, p 277
  • 7. Brooks N (2003) Vulnerability, risk and adaptation: A conceptual framework. Tyndall Centre for Climate Change Research Working Paper, 38(38), 1–16
  • 8. Büntgen U, Tegel W, Nicolussi K, McCormick M, Frank D, Trouet V, Luterbacher J (2011) 2500 years of European climate variability and human susceptibility. Science 331(6017):578–582. https://doi.org/10.1126/science.1197175
  • 9. Chatterjee S, Khan A, Akbari H, Wang Y (2016) Monotonic trends in spatio-temporal distribution and concentration of monsoon precipitation (1901–2002), West Bengal, India. Atmos Res 182:54–75. https://doi.org/10.1016/j.atmosres.2016.07.010
  • 10. Chowdary JS, Harsha HS, Gnanaseelan C, Srinivas G, Parekh A, Pillai P, Naidu CV (2017) Indian summer monsoon rainfall variability in response to differences in the decay phase of El Niño. Clim Dyn 48(7–8):2707–2727
  • 11. Da Silva RM, Santos CA, Moreira M, Corte-Real J, Silva VC, Medeiros IC (2015) Rainfall and river flow trends using Mann-Kendall and Sen’s slope estimator statistical tests in the Cobres River basin. Nat Hazards 77(2):1205–1221. https://doi.org/10.1007/s11069-015-1644-7
  • 12. Das J, Bhattacharya SK (2018) Trend analysis of long-term climatic parameters in Dinhata of Koch Bihar district, West Bengal. Spatial Inf Res 26(3):271–280. https://doi.org/10.1007/s41324-018-0173-3
  • 13. Datta P, Das S (2019) Analysis of long-term precipitation changes in West Bengal, India: an approach to detect monotonic trends influenced by autocorrelations. Dyn Atmos Oceans 88:101118. https://doi.org/10.1016/j.dynatmoce.2019.101118
  • 14. Dey T, Pala NA, Shukla G, Pal PK, Chakravarty S (2017) Perception on impact of climate change on forest ecosystem in protected area of West Bengal, India. J for Environ Sci 33(1):1–7. https://doi.org/10.7747/JFES.2017.33.1.1
  • 15. Drápela K, Drápelová I (2011) Application of Mann-Kendall test and the Sen’s slope estimates for trend detection in deposition data from Bílý Kříž (Beskydy Mts., the Czech Republic) 1997–2010. Beskydy 4(2):133–146
  • 16. Dubey SK, Trivedi RK, Chand BK, Mandal B, Rout SK (2017) Farmers’ perceptions of climate change, impacts on freshwater aquaculture and adaptation strategies in climatic change hotspots: a case of the Indian Sundarban delta. Environ Dev 21:38–51. https://doi.org/10.1016/j.envdev.2016.12.002
  • 17. Eckstein D, Künzel V, Schäfer L, Winges, M (2019) Global Climate Risk Index 2020. Bonn: Germanwatch. https://germanwatch.org/files/Global%20Climate%20Risk%20Index%202019_2.pdf. Accessed on 6th February, 2020
  • 18. Estrada F, Gay C, Conde C (2012) A methodology for the risk assessment of climate variability and change under uncertainty. A case study: coffee production in Veracruz, Mexico. Clim Change 113(2):455–479. https://doi.org/10.1007/s10584-011-0353-9
  • 19. Fukushima A, Kanamori H, Matsumoto J (2019) Regionality of long-term trends and interannual variation of seasonal precipitation over India. Prog Earth Planet Sci 6(1):1–20. https://doi.org/10.1186/s40645-019-0255-4
  • 20. Füssel HM (2005) Vulnerability in climate change research: a comprehensive conceptual framework. http://repositories.cdlib.org/ucias/breslauer/6. Accessed on 24th February, 2020.
  • 21. Ghosh KG (2018) Analysis of rainfall trends and its spatial patterns during the last century over the Gangetic West Bengal, Eastern India. J Geovisualization Spatial Anal 2(2):15. https://doi.org/10.1007/s41651-018-0022-x
  • 22. Ghosh TK, Jakobsen F, Joshi M, Pareta K (2019) Extreme rainfall and vulnerability assessment: case study of Uttarakhand rivers. Nat Hazards 99(2):665–687. https://doi.org/10.1007/s11069-019-03765-3
  • 23. Gocic M, Trajkovic S (2013) Analysis of changes in meteorological variables using Mann-Kendall and Sen’s slope estimator statistical tests in Serbia. Global Planet Change 100:172–182. https://doi.org/10.1016/j.gloplacha.2012.10.014
  • 24. Hamed KH (2009a) Exact distribution of the Mann-Kendall trend test statistic for persistent data. J Hydrol 365(1–2):86–94. https://doi.org/10.1016/j.jhydrol.2008.11.024
  • 25. Hamed KH (2009b) Enhancing the effectiveness of prewhitening in trend analysis of hydrologic data. J Hydrol 368(1–4):143–155. https://doi.org/10.1016/j.jhydrol.2009.01.040
  • 26. Hamed KH, Rao AR (1998) A modified Mann-Kendall trend test for autocorrelated data. J Hydrol 204(1–4):182–196. https://doi.org/10.1016/s0022-1694(97)00125-x
  • 27. HDR- Human Development Report (2019) Beyond income, beyond averages, beyond today: Inequalities in human development in the 21st century. Chapter 5; Climate change and inequalities in the Anthropocene. http://hdr.undp.org/en/2019-report, Accessed on 5th February, 2020
  • 28. He C, Wang Y, Li T (2019) Weakened impact of the developing El Niño on tropical Indian Ocean climate variability under global warming. J Clim 32(21):7265–7279. https://doi.org/10.1175/JCLI-D-19-0165.1
  • 29. Huang X, Zhou T, Turner A, Dai A, Chen X, Clark R, Jiang J, Man W, Murphy J, Rostron J, Wu B (2020) The recent decline and recovery of Indian summer monsoon rainfall: relative roles of external forcing and internal variability. J Clim Change 33(12):5035–5060. https://doi.org/10.1175/JCLI-D-19-0833.1
  • 30. India Climate Dialogue (2016) Heat wave jolts West Bengal by Jayanta Basu https://indiaclimatedialogue.net/2016/04/20/heat-wave-jolts-west-bengal/. Accessed on 3rd April, 2020.
  • 31. IPCC (Climate Change) (2014) Synthesis report; In: Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change (eds) Core Writing Team, Pachauri R K and Meyer LA, Geneva, Switzerland, pp 56–62
  • 32. IPCC (2013) Climate Change 2013: The Physical Science Basis, Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change, 1535. Eds. Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Midgley PM
  • 33. IPCC (2019) Summary for Policymakers. In: Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems [Shukla PR, Skea J, Calvo Buendia E, Masson-Delmotte V, Pörtner HO, Roberts DC, Zhai P, Slade R, Connors S, van Diemen R, Ferrat M, Haughey E, Luz S, Neogi S, Pathak M, Petzold J, Portugal Pereira J, Vyas P, Huntley E, Kissick K, Belkacemi M, Malley J (eds)]. In press
  • 34. Isaac V, Van Wijngaarden WA (2012) Surface water vapor pressure and temperature trends in North America during 1948–2010. J Clim 25(10):3599–3609
  • 35. Iwama AY, Batistella M, Ferreira LDC, Alves DS, Ferreira LDC (2016) Risk, vulnerability and adaptation to climate change: an interdisciplinary approach. Ambiente Sociedade 19(2):93–116. https://doi.org/10.1590/1809-4422ASOC137409V1922016
  • 36. Jain SK, Kumar V, Saharia M (2013) Analysis of rainfall and temperature trends in northeast India. Int J Climatol 33(4):968–978. https://doi.org/10.1002/joc.3483
  • 37. Karmeshu N (2012) Trend detection in annual temperature & precipitation using the Mann Kendall test–a case study to assess climate change on select states in the northeastern United States. Master of Environmental Studies Capstone Projects. 47. http://repository.upenn.edu/mes_capstones/47.
  • 38. Keeling CD (1961) The concentration and isotopic abundances of carbon dioxide in rural and marine air. Geochim Cosmochim Acta 24(3–4):277–298
  • 39. Keeling CD (1998) Rewards and penalties of monitoring the Earth. Annu Rev Energy Env 23(1):25–82
  • 40. Kendall MG (1975) Rank Correlation Methods, Book Series. Charles Griffin, London
  • 41. Kundzewicz ZW, Piniewski M, Mezghani A, Okruszko T, Pińskwar I, Kardel I, Marcinkowski P (2018) Assessment of climate change and associated impact on selected sectors in Poland. Acta Geophys 66(6):1509–1523. https://doi.org/10.1007/s11600-018-0220-4
  • 42. Kushwaha SPS, Nandy S (2012) Species diversity and community structure in sal (Shorea robusta) forests of two different rainfall regimes in West Bengal, India. Biodivers Conserv 21(5):1215–1228. https://doi.org/10.1007/s10531-012-0264-8
  • 43. Li LJ, Zhang L, Wang H, Wang J, Yang JW, Jiang DJ, Qin DY (2007) Assessing the impact of climate variability and human activities on streamflow from the Wuding River basin in China. Hydrol Process Int J 21(25):3485–3491. https://doi.org/10.1002/hyp.6485
  • 44. Liu Z (2012) Dynamics of interdecadal climate variability: a historical perspective. J Clim 25(6):1963–1995. https://doi.org/10.1175/2011JCLI3980.1
  • 45. Liverman DM (1990) Vulnerability to global environmental change. In: Kasperson RE, Dow K, Golding D, Kasperson JX (eds) Understanding global environmental change: the contributions of risk analysis and management. Clark University, Worcester, MA, pp 27–44
  • 46. Mahmood R, Jia S, Zhu W (2019) Analysis of climate variability, trends, and prediction in the most active parts of the Lake Chad basin, Africa. Sci Rep 9(1):1–18. https://doi.org/10.1038/s41598-019-42811-9
  • 47. Mandal S, Choudhury BU, Mondal M, Bej S (2013) Trend analysis of weather variables in Sagar Island, West Bengal, India: a long-term perspective (1982–2010). Current Science 947–953
  • 48. Mann HB (1945) Nonparametric tests against trend. Econom J Econom Soc. https://doi.org/10.2307/1907187
  • 49. Masroor M, Rehman S, Avtar R, Sahana M, Ahmed R, Sajjad H (2020) Exploring climate variability and its impact on drought occurrence: evidence from Godavari Middle sub-basin, India. Weather Clim Extremes. https://doi.org/10.1016/j.wace.2020.100277
  • 50. Midya SK, Saha U (2011) Rates of change of total ozone column and surface relative humidity: seasonal variations over Dum Dum (22 38′ N, 88 26′ E). Int J Remote Sens 32(22):7891–7899. https://doi.org/10.1080/01431161.2010.531789
  • 51. Modarres R, da Silva VDPR (2007) Rainfall trends in arid and semi-arid regions of Iran. J Arid Environ 70(2):344–355. https://doi.org/10.1016/j.jaridenv.2006.12.024
  • 52. Murphy BF, Timbal B (2008) A review of recent climate variability and climate change in southeastern Australia. Int J Climatol J R Meteorol Soc 28(7):859–879. https://doi.org/10.1002/joc.1627
  • 53. Nandargi SS, Barman K (2018a) Analysis of trends and variability in rainfall over West Bengal. Int J Curr Adv Res. https://doi.org/10.24327/ijcar.2018.14229.2570
  • 54. Nandargi SS, Barman K (2018b) Evaluation of climate change impact on rainfall variation in West Bengal. Acta Sci Agric 2:74–82
  • 55. Ninan KN, Bedamatta S (2012) Climate change, agriculture, poverty, and livelihoods: a status report. Institute for Social and Economic Change
  • 56. Nkuna TR, Odiyo JO (2016) The relationship between temperature and rainfall variability in the Levubu sub-catchment, South Africa. Int J Educ Learn Syst, 1. http://iaras.org/iaras/journals/ijes
  • 57. Önöz B, Bayazit M (2012) Block bootstrap for Mann-Kendall trend test of serially dependent data. Hydrol Process 26(23):3552–3560. https://doi.org/10.1002/hyp.8438
  • 58. Pal I, Al-Tabbaa A (2010) Regional changes in extreme monsoon rainfall deficit and excess in India. Dyn Atmos Oceans 49(2–3):206–214. https://doi.org/10.1016/j.dynatmoce.2009.07.001
  • 59. Pal S, Mazumdar D, Chakraborty PK (2015) District-wise trend analysis of rainfall pattern in last century (1901–2000) over Gangetic region in West Bengal, India. J Appl Natl Sci 7(2):750–757
  • 60. Panda A, Sahu N (2019) Trend analysis of seasonal rainfall and temperature pattern in Kalahandi, Bolangir and Koraput districts of Odisha. India Atmos Sci Lett 20(10):e932. https://doi.org/10.1002/asl.932
  • 61. Parthasarathy B, Munot AA, Kothawale DR (1994) All-India monthly and seasonal rainfall series: 1871–1993. Theor Appl Climatol 49(4):217–224. https://doi.org/10.1007/BF00867461
  • 62. Patz JA, McGeehin MA, Bernard SM, Ebi KL, Epstein PR, Grambsch A, Samet JM (2000) The potential health impacts of climate variability and change for the United States: executive summary of the report of the health sector of the US National Assessment. Environ Health Perspect 108(4):367–376. https://doi.org/10.1289/ehp.00108367
  • 63. Pitchaikani JS, Sarma KS, Bhattacharyya S (2017) First time report on the weather patterns over the Sundarban mangrove forest, East Coast of India. Indian J Geo Mar Sci 46:766–770
  • 64. Rehman S, Sahana M, Hong H, Sajjad H, Ahmed BB (2019) A systematic review on approaches and methods used for flood vulnerability assessment: framework for future research. Nat Hazards. https://doi.org/10.1007/s11069-018-03567-z
  • 65. Rind D, Goldberg R, Ruedy R (1989) Change in climate variability in the 21st century. Clim Change 14(1):5–37. https://doi.org/10.1007/bf00140173
  • 66. Rosso Grossman M (2018) Climate change and the individual. Am J Comp Law 66:345–378. https://doi.org/10.1093/ajcl/avy018
  • 67. Sadhukhan I, Lohar D, Pal DK (2000) Premonsoon season rainfall variability over Gangetic West Bengal and its neighbourhood, India. Int J Climatol J R Meteorol Soc 20(12):1485–1493. https://doi.org/10.1002/1097-0088(200010)20:12%3c1485::AID-JOC544%3e3.0.CO;2-V
  • 68. Sahana M, Rehman S, Paul AK, Sajjad H (2019) Assessing socio-economic vulnerability to climate change-induced disasters: evidence from Sundarban Biosphere Reserve, India. Geol Ecol Landscapes. https://doi.org/10.1080/24749508.2019.1700670
  • 69. Sahana M, Rehman S, Ahmed R, Sajjad H (2020) Analyzing climate variability and its effects in Sundarban Biosphere Reserve, India: reaffirmation from local communities. Environ Dev Sustain. https://doi.org/10.1007/s10668-020-00682-5
  • 70. Sam K, Chakma N (2019) Variability and trend detection of temperature and rainfall: a case study of Bengal Duars. Mausam 70(4):807–814
  • 71. Satapathy S, Porsché I, Rolker D, Bhatt S, Tomar S, Nair S (2014) A framework for climate change vulnerability assessments. New Delhi. https://www.adaptationcommunity.net/?wpfb_dl=236. Accessed on 5th February, 2020
  • 72. Sen PK (1968) Estimates of the regression coefficient based on Kendall’s tau. J Am Stat Assoc 63(324):1379–1389. https://doi.org/10.1080/01621459.1968.10480934
  • 73. Singh M, Bhatla R (2020) Intense rainfall conditions over Indo-Gangetic Plains under the influence of Madden–Julian Oscillation. Meteorol Atmos Phys 132(3):441–449. https://doi.org/10.1007/s00703-019-00703-7
  • 74. Singh PK, Nair A (2014) Livelihood vulnerability assessment to climate variability and change using fuzzy cognitive mapping approach. Clim Change 127(3–4):475–491. https://doi.org/10.1007/s10584-014-1275-0
  • 75. Singh AK (2018) High resolution palaeoclimatic changes in selected sectors of the indian himalaya by using speleothems: past climatic changes using cave structures. Springer
  • 76. Sobhan R (2014) Vulnerability traps and their effects on human development. UNDP Human Development Report Office
  • 77. Press Information Bureau (2019) Studies on Impact of Climate Change. Government of India Ministry of Environment, Forest and Climate Change. https://pib.gov.in/newsite/PrintRelease.aspx?relid=194905. Accessed on 1st January, 2021
  • 78. Thornton PK, Ericksen PJ, Herrero M, Challinor AJ (2014) Climate variability and vulnerability to climate change: a review. Glob Change Biol 20(11):3313–3328. https://doi.org/10.1111/gcb.12581
  • 79. Le Treut H (2007) Historical overview of climate change. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change.
  • 80. UNFCCC-United Nations Framework Convention on Climate Change (2015) Introduction to loss and damage. https://unfccc.int/topics/adaptation-and-resilience/the-big-picture/introduction-to-loss-and-damage. Accessed on 6th February, 2020
  • 81. Virokannas E, Liuski S, Kuronen M (2018) The contested concept of vulnerability–a literature review. Eur J Soc Work. https://doi.org/10.1080/13691457.2018.1508001
  • 82. West Bengal Disaster Management & Civil Defence Department (2020) Natural Disaster: Flood. http://wbdmd.gov.in/pages/flood2.aspx. Accessed on 6th April, 2020.
  • 83. West Bengal State Action Plan on Climate Change (2010) Government of West Bengal, Government of India. http://www.nicra-icar.in/nicrarevised/images/State%20Action%20Plan/West-Bengal-SAPCC.pdf. Accessed on 27th February 2020.
  • 84. Xu Z, Tang Y, Connor T, Li D, Li Y, Liu J (2017) Climate variability and trends at a national scale. Sci Rep 7(1):1–10. https://doi.org/10.1038/s41598-017-03297-5
  • 85. Yang S, Li Z, Yu JY, Hu X, Dong W, He S (2018) El Niño-Southern Oscillation and its impact in the changing climate. Natl Sci Rev 5(6):840–857. https://doi.org/10.1093/nsr/nwy046
  • 86. Yue S, Wang C (2004) The Mann-Kendall test modified by effective sample size to detect trend in serially correlated hydrological series. Water Resour Manage 18(3):201–218. https://doi.org/10.1023/B:WARM.0000043140.61082.60
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4431b99c-d777-407d-97bb-95127cd33441
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.