PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The influence of energy storage systems on emissions reduction in power generation systems based on dual optimization methods

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Wpływu systemów magazynowania energii na ekonomiczne planowanie emisji w elektrowniach
Języki publikacji
EN
Abstrakty
EN
This paper investigates methods to find out the effects of energy storage systems on economic emissions scheduling in power plants (ESS for EES). ESS for EES can assist in scheduling generator operations by considering fuel costs, emission levels, energy storage systems while still meeting load demands and operational constraints so that the optimal results are obtained. In this article, the ESS problem for EES is formulated as a multi-objective problem by considering the fuel costs and emissions objectives of the generating units
PL
W artykule zbadano wpływu systemów magazynowania energii na ekonomiczne planowanie emisji w elektrowniach (ESS dla EES). ESS dla EES może pomóc w planowaniu pracy generatora, biorąc pod uwagę koszty paliwa, poziomy emisji, systemy magazynowania energii, jednocześnie spełniając wymagania obciążenia i ograniczenia operacyjne, aby uzyskać optymalne wyniki. W tym artykule problem ESS dla EES został sformułowany jako problem wielozadaniowy, biorąc pod uwagę cele w zakresie kosztów paliwa i emisji jednostek wytwórczych.
Rocznik
Strony
149--152
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
autor
  • Hasanuddin University, Indonesia
  • State Polytechnic of Ujung Pandang, Indonesia
  • Hasanuddin University, Indonesia
autor
  • Hasanuddin University, Indonesia
Bibliografia
  • [1] A. S. Tayeb and H. Bouzeboudja, "Application of a new metaheuristic algorithm using egyptian vulture optimization for economic," Przegląd Elektrotechniczny, vol. 39, p. 8234.07, 2019.
  • [2] A. Arief, M. B. Nappu, S. M. Rachman, and M. Darusman, "Optimal photovoltaic placement at the southern sulawesi power system for stability improvement," in 2017 4th International Conference on Information Technology, Computer, and Electrical Engineering (ICITACEE), 2017, pp. 87-92: IEEE.
  • [3] M. B. Nappu, A. Arief, and M. I. Bachtiar, "Strategic Placement of Capacitor and DG for Voltage Improvement after Large Penetration of Renewable Energy Power Plant: An Indonesian Study," in 2018 7th International Conference on Renewable Energy Research and Applications (ICRERA), 2018, pp. 627- 631: IEEE.
  • [4] A. Arief and M. B. Nappu, "DG placement and size with continuation power flow method," in 2015 International Conference on Electrical Engineering and Informatics (ICEEI), 2015, pp. 579-584: IEEE.
  • [5] A. Arief, M. B. Nappu, and Antamil, "Analytical method for reactive power compensators allocation," International Journal of Technology, vol. 9, no. 3, pp. 602-612, 2018.
  • [6] A. Arief, Z. Dong, M. B. Nappu, and M. Gallagher, "Under voltage load shedding in power systems with wind turbinedriven doubly fed induction generators," Electric Power Systems Research, vol. 96, pp. 91-100, 2013.
  • [7] A. K. Rohit, K. P. Devi, and S. Rangnekar, "An overview of energy storage and its importance in Indian renewable energy sector: Part I–Technologies and Comparison," Journal of Energy Storage, Elsevier, vol. 13, pp. 10-23, 2017.
  • [8] R. Bharathi, M. J. Kumar, D. Sunitha, and S. Premalatha, "Optimization of combined economic and emission dispatch problem—A comparative study," in 2007 International Power Engineering Conference (IPEC 2007), 2007, pp. 134-139: IEEE.
  • [9] A. Sundaram, "Solution of Combined Economic Emission Dispatch Problem with Valve-Point Effect Using Hybrid NSGA II-MOPSO," p. 81, 2018.
  • [10] M. Jevtic, N. Jovanovic, and J. Radosavljevic, "Solving a combined economic emission dispatch problem using adaptive wind driven optimization," Turkish Journal of Electrical Engineering & Computer Sciences, vol. 26, no. 4, pp. 1747- 1758, 2018.
  • [11] C. Faseela and H. Vennila, "Economic and Emission Dispatch using Whale Optimization Algorithm (WOA)," International Journal of Electrical and Computer Engineering (IJECE), vol. 8, no. 3, p. 1297, 2018.
  • [12] N. S. Tung and S. Chakravorty, "Ant lion optimizer based approach for optimal scheduling of thermal units for small scale electrical economic power dispatch problem," International Journal of Grid Distributed Computing, vol. 9, no. 7, pp. 211- 224, 2016.
  • [13] M. B. Nappu and A. Arief, "Network losses-based economic redispatch for optimal energy pricing in a congested power system," Energy Procedia, vol. 100, pp. 311-314, 2016.
  • [14] M. B. Nappu, A. Arief, and R. C. Bansal, "Transmission management for congested power system: A review of concepts, technical challenges and development of a new methodology," Renewable and Sustainable Energy Reviews, vol. 38, pp. 572-580, 2014.
  • [15] M. B. Nappu, R. C. Bansal, and T. K. Saha, "Market power implication on congested power system: A case study of financial withheld strategy," International Journal of Electrical Power & Energy Systems, vol. 47, pp. 408-415, 2013.
  • [16] M. Younes and F. Benhamida, "Genetic algorithm-particle swarm optimization (GA-PSO) for economic load dispatch," Przegląd Elektrotechniczny, vol. 4, pp. 369-372, 2011.
  • [17] A. AURASOPON and C. TAKEANG, "Hybrid Algorithm combining Lambda Iteration and Bee Colony Optimization to Solve an Economic Dispatch Problem with Prohibited Operating Zones," Przegląd Elektrotechniczny, 2019.
  • [18] M. B. Nappu, A. Arief, and A. S. Duhri, "Economic emission dispatch for thermal power plant in Indonesia," International Journal of Smart Grid and Clean Energy, vol. 8, no. 4, pp. 500- 04, 2019.
  • [19] W. S. Sakr, R. A. El-Sehiemy, and A. M. Azmy, "Adaptive differential evolution algorithm for efficient reactive power management," ElSevier, vol. 53, pp. 336-351, 2017.
  • [20] L. Xiaoping, D. Ming, H. Jianghong, H. Pingping, and P. Yali, "Dynamic economic dispatch for microgrids including battery energy storage," in The 2nd international symposium on power electronics for distributed generation systems, 2010, pp. 914- 917: IEEE.
  • [21] W. A. Ajami, A. Arief, and M. B. Nappu, "Optimal power flow for power system interconnection considering wind power plants intermittency," International Journal of Smart Grid and Clean Energy, vol. 8, no. 3, pp. 372-76, 2019.
  • [22] S. Mirjalili, "The ant lion optimizer," Advances in Engineering Software, ElSevier, vol. 83, pp. 80-98, 2015.
  • [23] D. Dong, Z. Ye, Y. Cao, S. Xie, F. Wang, and W. Ming, "An Improved Association Rule Mining Algorithm Based on Ant Lion Optimizer Algorithm and FP-Growth," in 2019 10th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS), 2019, vol. 1, pp. 458-463: IEEE.
  • [24] L. Davis, "Handbook of genetic algorithms," 1991.
  • [25] J. H. Holland, Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. MIT press, 1992.
  • [26] U. Güvenç, "Combined economic emission dispatch solution using genetic algorithm based on similarity crossover," Scientific Research and Essays Academic Journals, vol. 5, no. 17, pp. 2451-2456, 2010.
  • [27] S. N. Fitri, "Economic Dispatch using Novel Bat AlgorithmConstrained by Voltage Stability," 2019.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-442b70ee-b84a-48a1-8290-69868fbfdb4b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.