PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modal analysis of frame structures with semi-rigid joints and viscoelastic connections modeled by fractional derivatives

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
CMM-SolMech (5-8.09.2022 ; Swinoujscie ; Poland)
Języki publikacji
EN
Abstrakty
EN
The paper presents two methods of solving the problem of the dynamics of a frame structure with viscoelastic bonds in nodes. In the first approach, known from the literature, two-node beam elements with three degrees of freedom in each node were used. Exact shape functions were adopted to obtain a stiffness matrix, a consistent mass matrix and a damping matrix for the beam element. These matrices were then modified by introducing rotational viscoelastic constraints at the boundary nodes. In the second approach, a new method of modelling viscoelastic bonds in frame structures was proposed. It consists in removing rigid bonds between elements along selected degrees of freedom and replacing them with a new, additional element with viscoelastic properties. This approach allows the use of any rheological model to describe viscoelastic bonds (i.e. an additional element) without the need to create a new modified finite element. In this work, an advanced rheological model, i.e. the fractional Kelvin model, was used to describe rotational viscoelastic bonds. The use of fractional derivatives to describe the damping properties reduces the number of parameters needed in the model, but leads to a non-linear eigenproblem. In order to solve the eigenvalue problem, the continuation method was used, and the dynamic characteristics of the structure were determined on the basis of the calculated eigenvalues. Selected structures with viscoelastic nodes were analyzed and the obtained results confirm the effectiveness of the proposed approach.
Rocznik
Strony
337--363
Opis fizyczny
Bibliogr. 44 poz., rys., tab., wykr.
Twórcy
autor
  • Faculty of Civil and Transport Engineering, Poznan University of Technology, Poland
  • Faculty of Civil and Transport Engineering, Poznan University of Technology, Poland
  • Faculty of Civil and Transport Engineering, Poznan University of Technology, Poland
Bibliografia
  • 1. S.-H. Choi, S.-E. Kim, Optimal design of semi-rigid steel frames using practical, nonlinear analysis, Steel Structures, 6, 141–152, 2006.
  • 2. D. Anderson, F. Bijlaard, D. Nethercot, Analysis and Design of Steel Frames with Semi-rigid Joints, ECCS, Technical Committee 8, Structural Stability, 1992, doi: 10.5169/seals-50714.
  • 3. S. Živkovic, N. Stojkovic, M. Spasojevic-Šurdilovic, M. Miloševic, Global analysis of steel constructions with semi-rigid connections, Tehnicki Vjesnik, 27, 3, 951–960, 2020, doi: 10.17559/TV-20180414100627.
  • 4. L. Pinheiro, R.A.M. Silveira, Computational procedures for nonlinear analysis of frames with semi-rigid connections, Latin American Journal of Solid and Structures, 2, 339–367, 2005.
  • 5. A.N.T. Ihaddoudène, M. Saidani, M. Chemrouk, Mechanical model for analysis of steel frames with semi rigid joints, Journal of Constructional Steel Research, 65, 3, 631–640, 2009, doi: 10.1016/j.jcsr.2008.08.010.
  • 6. M.H. Asl, B. Farivar, S.B. Momenzadeh, Investigation of the rigidity of welded shear tab connections, Engineering Structures, 179, 353–366, 2019, doi: 10.1016/j.engstruct. 2018.10.077.
  • 7. E. Bayo, J. Gracia, Stiffness modelling of 2D welded joints using metamodels based on mode shapes, Journal of Constructional Steel Research, 156, 242–251, 2019, doi: 10.1016/j.jcsr.2019.02.017.
  • 8. S.B.M. Boudia, N. Boumechra, A. Bouchair, A. Missoum, Modeling of bolted end plate beam-to-column joints with various stiffeners, Journal of Constructional Steel Research, 167, 105963, 2020, doi: 10.1016/j.jcsr.2020.105963.
  • 9. L.M.C. Simões, Optimization of frames with semi-rigid connections, Computers & Structures, 60, 4, 531–539, 1996, doi: 10.1016/0045-7949(95)00427-0.
  • 10. V.H. Truong, P.C. Nguyen, S.E. Kim, An efficient method for optimizing space steel frames with semi-rigid joints using practical advanced analysis and the microgenetic algorithm, Journal of Constructional Steel Research, 128, 416–427, 2017, doi: 10.1016/j.jcsr.2016.09.013.
  • 11. A.A. Del Savio, D.A. Nethercot, P.C.G.S. Vellasco, S.A.L. Andrade, L.F. Martha, Generalized component-based model for semi-rigid beam-to-column connections including axial versus moment interaction, Journal of Constructional Steel Research, 65, 1876–1895, 2009, doi: 10.1016/j.jcsr.2009.02.011.
  • 12. A. Ahmed, Prediction of moment-rotation characteristic of top- and seat-angle bolted connection incorporating prying action, International Journal of Advanced Structural Engineering, 9, 79–93, 2017, doi: 10.1007/s40091-017-0150-4.
  • 13. A. Alhasawi, S. Guezouli, M. Couchaux, Component-based model versus stressresultant plasticity modelling of bolted end-plate connection: Numerical implementation, Structures, 11, 164–177, 2017, doi: 10.1016/j.istruc.2017.05.004.
  • 14. Y. Harada, L.S. da Silva, Three-dimensional macro-modeling of beam-to-rectangular hollow section column joints under cyclic loading. Part 1: Modeling of cycling out-of-plane behavior of single isolated plate element, Journal of Constructional Steel Research, 162, 105713, 2019, doi: 10.1016/j.jcsr.2019.105713.
  • 15. P.C. Nguyen, S.E. Kim, Nonlinear inelastic time-history analysis of three-dimensional semi-rigid steel frames, Journal of Constructional Steel Research, 101, 192–206, 2014.
  • 16. A.S. Galvão, A.R.D. Silva, R.A.M. Silveira, P.B. Gonçalves, Nonlinear dynamic behavior and instability of slender frames with semi-rigid connections, International Journal of Mechanical Sciences, 52, 12, 1547–1562, 2010, doi: 10.1016/j.ijmecsci.2010.07.002.
  • 17. M. Sekulovic, R. Salatic, M. Nefovska, Dynamic analysis of steel frames with flexible connections, Computers & Structures, 80, 11, 935–955, 2002, doi: 10.1016/S0045-7949(02)00058-5.
  • 18. K. Zhu, F.G.A. Al-Bermani, S. Kitipornchai, B. Li, Dynamic response of flexibly jointed frames, Engineering Structures, 17, 8, 575–580, 1995, doi: 10.1016/0141-0296(95)00008-U.
  • 19. F. Minghini, N. Tullini, F. Laudiero, Vibration analysis of pultruded FRP frames with semi-rigid connections, Engineering Structures, 32, 10, 3344–3354, 2010, doi: 10.1016/j.engstruct.2010.07.008.
  • 20. T. Türker, M.E. Kartal, A. Bayraktar, M. Muvafik, Assessment of semi-rigid connections in steel structures by modal testing, Journal of Constructional Steel Research, 65, 7, 1538–1547, 2009, doi: 10.1016/j.jcsr.2009.03.002.
  • 21. A.U. Öztürk, M. Seçer, An investigation for semi-rigid frames by different connection models, Mathematical and Computational Applications, 10, 1, 35–44, 2005, doi: 10.3390/mca10010035.
  • 22. S. Gopcevic, S. Brcic, L. Zugic, Dynamic properties and time response of frameworks with semi-rigid and eccentric connections, Architecture and Civil Engineering, 9, 3, 379–393, 2011, doi: 10.2298/FUACE1103379G.
  • 23. J. Pan, R. Huang, J. Xu, P. Wang, Z. Wang, J. Chen, Behavior of exposed columnbase connections with four internal anchor bolts under seismic loading, Structures, 34, 105–119, 2021, doi: 10.1016/j.istruc.2021.07.016.
  • 24. M. Bayat, S.M. Zahrai, Seismic performance of mid-rise steel frames with semi-rigid connections having different moment capacity, Steel and Composite Structures, 25, 1, 1–17, 2017, doi: 10.12989/scs.2017.25.1.001.
  • 25. M. Latour, G. Rizzano, Mechanical modelling of exposed column base plate joints under cyclic loads, Journal of Constructional Steel Research, 162, 105726, 2019, doi: 10.1016/j.jcsr.2019.105726.
  • 26. M.Wang, Y. Shi, Y.Wang, G. Shi, Numerical study on seismic behaviors of steel frame end-plate connections, Journal of Constructional Steel Research, 90, 140–142, 2013, doi: 10.1016/j.jcsr.2013.07.033.
  • 27. P.C. Nguyen, S.E. Kim, Second-order spread-of-plasticity approach for nonlinear timehistory analysis of space semi-rigid steel frames, Finite Elements in Analysis and Design, 105, 1–15, 2015, doi: 10.1016/j.finel.2015.06.006.
  • 28. H.K. Celik, G. Sakar, Semi-rigid connections in steel structures: state-of-the-Art report on modelling, analysis and design, Steel and Composite Structures, 45, 1, 1–21, 2022, doi: 10.12989/scs.2022.45.1.001.
  • 29. H.F. Ozel, A. Saritas, T. Tasbahji, Consistent matrices for steel framed structured with semi-rigid connections accounting for shear deformation and rotary inertia effects, Engineering Structures, 137, 194–203, 2017, doi: 10.1016/j.engstruct.2017.01.070.
  • 30. Z.J. Fan, J.H. Lee, K.H. Kang, K.J. Kim, The forced vibration of a beam with viscoelastic boundary supports, Journal of Sound and Vibration, 210, 5, 673–682, 1998, doi: 10.1006/jsvi.1997.1353.
  • 31. Y.L. Xu, W.S. Zhang, Modal analysis and seismic response of steel frames with connection dampers, Engineering Structures, 23, 4, 385–396, 2001, doi: 10.1016/S0141-0296(00)00062-6.
  • 32. A. Banisheikholeslami, F. Behnamfar, M. Ghandil, A beam-to-column connection with visco-elastic and hysteretic dampers for seismic damage control, Journal of Constructional Steel Research, 117, 185–195, 2016, doi: 10.1016/j.jcsr.2015.10.016.
  • 33. Y.A. Rossikhin, M.V. Shitikova, New method for solving dynamic problems of fractional derivative viscoelasticity, International Journal of Engineering Science, 39, 2, 149–176, 2001, doi: 10.1016/S0020-7225(00)00025-2.
  • 34. R.M. Lin, T.Y. Ng, Development of a theoretical framework for vibration analysis of the class of problems described by fractional derivatives, Mechanical Systems and Signal Processing, 116, 78–96, 2019, doi: 10.1016/j.ymssp.2018.06.020.
  • 35. G. Muscolino, A. Palmeri, A. Recupero, Seismic analysis of steel frames with viscoelastic model of semi-rigid connections, 13th World Conference on Earthquake Engineering, Vancouver, Canada, 2004.
  • 36. T. Kocatürk, Ö. Tuncer, M. Simsek, Determination of steady response of portal frames with intermediate viscoelastic links, International Journal of the Physical Science, 6, 16, 3927–3937, 2011.
  • 37. S. Kawashima, T. Fujimoto, Vibration analysis of frames with semi-rigid connections, Computers & Structures, 19, 1-2, 85–92, 1984, doi: 10.1016/0045-7949(84)90206-2.
  • 38. Z. Pawlak, R. Lewandowski, The continuation method for the eigenvalue problem of structures with viscoelastic dampers, Computers & Structures, 125, 53–61, 2013, doi: 10.1016/j.compstruc.2013.04.021.
  • 39. R. Lewandowski, M. Baum, Dynamic characteristics of multilayered beams with viscoelastic layers described by the fractional Zener model, Archive of Applied Mechanics, 85, 12, 1793–1814, 2015, doi: 10.1007/s00419-015-1019-2.
  • 40. R. Lewandowski, P. Litewka, P. Wielentejczyk, Free vibrations of laminate plates with viscoelastic layers using the refined zig-zag theory, Part 1: Theoretical background, Composite Structures, 278, 114547, 2021, doi: 10.1016/j.compstruct.2021.114547.
  • 41. M. Kaminski, A. Lenartowicz, M. Guminiak, M. Przychodzki, Selected problems of random free vibrations of rectangular thin plates with viscoelastic dampers, Materials, 15, 19, 6811, 2022, doi: 10.3390/ma15196811.
  • 42. R. Lewandowski, Nonlinear steady state vibrations of beams made of the fractional Zener material using an exponential version of the harmonic balance method, Meccanica, 57, 2337–2354, 2022, doi: 10.1007/s11012-022-01576-8.
  • 43. A. Capsoni, G.M. Viganò, K. Bani-Hani, On damping effects in Timoshenko beams, International Journal of Mechanical Sciences, 73, 27–39, 2013, doi: 10.1016/j.ijmecsci.2013.04.001.
  • 44. A.R.D. Silva, E.A.P. Batelo, R.A.M. Silveira, F.A. Neves, P.B. Gonçalves, On the nonlinear transient analysis of planar steel frames with semi-rigid connections: from fundamentals to algorithms and numerical studies, Latin American Journal of Solids and Structures, 15, 3, 2018, doi: 10.1590/1679-78254087.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4422a930-ea97-4562-a923-cecd0cf96800
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.