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Abstract. The paper discusses identification of numeric model parameters of tunnel lining in a soil 
medium according to the discrete element method. An author’s program based on the discrete element 
method was used. Laboratory tests were conducted to determine the computer model parameters 
defining the lining and the soil medium. The numerical model was calibrated by comparing the lining 
deformations occurring in the laboratory test and in the numeric simulation. Tunnel lining displace-
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1. Introduction

Modelling the behaviour of a physical soil medium must reflect its internal 
structure and mechanisms emerging during deformation. In many cases, it is useful 
to employ approximations treating the soil medium as a continuous medium with 
assigned mathematical expressions of physical theories of varied degrees of non-
-linearity. In these theories, the deformation mechanism is not expressed explicitly. 
The mechanism is hidden in mathematical differential expressions of geometry and 
displacement relations, and in equilibrium equations. Even when using numerical 
analysis methods in accordance with FEM, or finite difference methods, medium 
discretisation does not change the essence of the basic principle of medium conti-
nuity, although it does reduce this principle to a degree. It is believed that the con-
tinuous medium model can be considered as consistent with cohesive soil media 
with a compact structure, which means no marked content of the liquid phase.
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For non-cohesive soils, which have a granular structure, analysis results obtained 
under the continuous model must be interpreted with a degree of caution. This type 
of medium model ignores the actual deformation mechanisms, which are charac-
terised not by grain deformation but by their mutual displacement. The granular 
structure of the medium — its framework — changes. The primary interaction 
within the medium are friction forces, not deformations of grains taking axial for-
ces from adjacent grains. Today it is believed that the proper method of analysing 
the deformations of such media is defining the medium as granular, while the analysis 
method is the discrete element method (DEM).

This paper presents the process of identifying the parameters of a DEM numerical 
model of a non-cohesive soil medium with a flexible model cylinder tunnel lining 
placed within. Such a model can be used for further numerical analysis of tunnel 
construction interactions with the surrounding soil medium. This will enable taking 
into account such factors as the structural flexibility of the lining or imperfections 
of contact with the soil medium in the analysis.

2. Discrete element method

An intrinsic property of non-cohesive soil media is their granular structure, which 
creates a natural spatial discretisation, usually irregular. Thanks to discrete models, it 
is possible to take into account the arrangement of individual particles, their mutual 
overlap, changes in the medium’s density as a result of loading and unloading, and 
the effects of the medium’s grain size distribution on test results. One major method 
of this kind is the Discrete Element Method (DEM) [4]. This method is chiefly used 
to analyse dynamics problems [3, 15]. Its sample applications in loose medium studies 
include simulations of direct shear [12, 17] and triaxial compression [14].

It can be employed to model, among others, the behaviour of naturally fissured 
rock that undergoes further fragmentation, for example as a result of tunnel boring 
without installing any linings [2], or the behaviour of concrete — papers [6, 7]. 
The drawbacks of discrete methods include fairly high processing load during 
simulations of complex problems, caused by the very high number of elements. This 
entails a long duration of simulations. It is one of the reasons why it is proposed to 
combine continuous and discrete modelling, e.g. FEM and DEM, in a single simu-
lation [5], [10], [11]. Furthermore, DEM has successfully been used to analyse, for 
example, the behaviour of solid rock [13].

2.1. Theoretical basics of DEM

The idea of the method in question is modelling a loose medium directly as a set 
of individual particles with a specific shape, which can interact with one another 
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with contact forces calculated in accordance with the assumed local contact model. 
Due to significant simplifications during numerical searching for contacting ele-
ments, the frequently used shapes include spheres (3D), cylinders (2D) and elements 
formed of interpenetrating or “patched together” spheres or cylinders. Elliptical 
elements are also used on occasion [16]. The basic operations performed during 
the computations are: searching for pairs of elements in contact, calculating contact 
interactions between them, updating element positions based on motion equations. 
The model of the material is described using constitutive relations for local contact 
between individual elements. Depending on the material described, the contact 
may take the form of a permanent tension-resistant bond, or a non-permanent 
bond. A permanent bond can be broken if the affecting force has a sufficient value. 
For loose materials, contact is non-permanent. This type of contact can also occur 
in the event that particles modelling a solid material, whose bond was previously 
severed, come into contact again. Generally, the constitutive contact model takes 
into account inter-element interactions in the form of forces and possibly moments, 
resulting from a certain assumed rigidity of bonds, friction and damping. A fairly 
simple example is the perfect brittle-elastic model. More complex instances include 
models with gradually decreasing bond rigidity and elastic-plastic models with 
softening effect.

2.2. Calculating contact interactions

Contact forces are calculated using a constitutive model of contact between 
two elements, shown in Fig. 1. Generally, such contact can be treated as “soft” [4] 
or “rigid”. For rigid contact, only post-impact velocities of elements are calculated, 
the forces of interactions between them are not determined. Under “soft” contact, 
a minor interpenetration of discrete elements is allowed on impact, which can be 
treated as micro-scale deformation of the given particles. In this study the “soft” 
contact model is used. It is described with a rigidity modulus for the axial (kn) and 
contact direction (ks), a damping factor cn and a sliding friction factor μ. The software 
utilised also enables taking into account rolling friction and external damping, which 
are described further in this paper.

Fig. 1. Model of contact between two discrete elements
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The contact force at the point of contact between elements can be decomposed 
into the tangent Fs and normal Fn constituents (Fig. 2). The normal contact force 
Fn can in turn be decomposed into the elastic s

nF  and damping t
nF  constituents.

Fig. 2. Element interactions and the contact model

2.2.1.  Normal contact force

Decomposing the normal force into the elastic and damping constituents yields 
the following formula

 .s t
n n nF F F= +  (1)

The elastic constituent is calculated as

 ,s
n n nF k g= ⋅  (2)

where gn means mutual “overlapping” of elements (Fig. 3) at the given moment, 
calculated as gn = lc – ri – rj.

Fig. 3. Elements in contact (case gn = 0)

The damping constituent, on the other hand, is calculated for viscous damping 
according to the following formula

 ,t
n n nwF c v= ⋅  (3)

where νnw is the normal constituent of relative velocity at the point of contact between 
elements. It is convenient to relate the damping to the critical damping value ccr 
using the factor αc and the following relation

 
.n c crc c= ⋅  (4)
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On contact between two discrete elements connected with a spring of rigidity 
kn, the critical damping value is

 
( ) ( )1 2 1 22 ,cr nc m m k m m= +

 
(5)

where m1  and m2 are the element masses.

2.2.2. Tangent contact force

If there is no cohesion, the tangent force is calculated according to the so-called 
regularised Coulomb friction model, shown in Fig. 4. The maximum possible value 
of the friction force is therefore

 
max .s nF F=  (6)

The tangent force value in the given local contact is updated based on the values 
of the so-called incremental slide usw and of tangent rigidity, according to the fol-
lowing formula

 
1 ,prob n

s s s swk−= + ⋅∆F F u
 

(7)

where prob
sF  is the so-called trial value of tangent force.

Fig. 4. Regularised Coulomb friction model used in DEM [10].

Next, if maxprob
s sF≤F , then the new (current) friction force

 ,akt prob
s s=F F  (8)

while if maxprob
s sF≤F , then

 

max .
prob

akt s
s s prob

s

F= ⋅
F

F
F  

(9)
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The value of the so-called incremental slide is defined by

 ,sw sw t∆ = ⋅∆u v  (10)

where vsw is the vector of the tangent relative linear velocity constituent vw at the point 
of contact calculated based on linear v and angular Φ  velocities of the colliding 
elements (Fig. 2). Relative linear velocity at the point of contact is calculated as

 ( ) ( ),w = +Φ × − +Φ ×j j j i i iv v r v r 

 (11)

and then

 ( ) ,sw w= − ⋅w i iv v v n n
 (12)

where ni is the unit vector normal to the plane of contact.

2.2.3. Rolling friction resistance

This resistance Mf  is determined based on relative rotational speed at the point 
of contact wΦ , the assumed “rolling resistance rigidity” kq and the rolling friction 
factor f, in the same manner as sliding friction resistance. The f value can be calcu-
lated as part of a discrete element radius (rk) using the ε factor according to formula 
f = ε . rk. The maximum possible rolling resistance value is therefore

 
max

n .fM f F= ⋅  (13)

In the three-dimensional model, the resistance acting around the axis perpendi-
cular to the plane of contact between spheres and acting around the axis lying in this 
plane is calculated separately. Analyses of the effects of rolling resistance in DEM can 
be found in papers [8, 9], while a comparative analysis of different rolling resistance 
models, including methods of calculating kq, are presented in paper [1]. The use 
of the right values of the sliding and rolling friction parameters is important, parti-
cularly for simulations where the effects of roughness and irregularity of the surface 
of elements of the given medium must be represented.

Other than the interactions already discussed, initial stresses in the medium are 
also important for soils, and they can be taken into account at the start of the com-
putations as an initial state condition.

2.3. Motion equations of elements

For the purposes of performing the numerical simulations, the simulation time 
assumed at the start of the computations is divided into time steps Δt. At each time 
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step, linear and rotational accelerations are calculated according to Newton’s motion 
equations for each cylindrical (2D) or spherical (3D) element. The matrix notation 
for a single element in linear motion is

 ,calk
i i i⋅ =m U F

 (14)

where mi is the matrix of masses of the i discrete element, Üi is the linear accele-
ration vector, and calk

iF  is the vector of the resultant forces acting on the element.

For rotational motion, the formula is

 ,calk
i i i i i i⋅Φ +Φ × ⋅Φ =J J M  

 (15)

where Ji is the matrix of inertia moments for the discrete element, iΦ  is the vec-
tor of rotational accelerations, iΦ  is the angular velocity vector, while calk

iM  is 
the external moments vector.

In order to determine the velocities and displacements, motion equations are 
integrated using the explicit or implicit method. Due to the significantly lower 
computation cost — no need to solve a system of equations — the explicit method 
is frequently used.

This requires limiting the time step value Δt to the critical value equal

 
( )( )2

max2 1 ,ct   ∆ = + −
 

(16)

where ωmax is the highest natural frequency of the system, while η defines the ratio 
of the damping used to critical damping for free vibrations with a frequency of ωmax.

3. Author’s DEM software

The author’s software uses the “soft” contact model described earlier in this 
paper. This model, discussed in paper [4], assumes a linear relation between ele-
ment rigidity and its size. Elastic contact between two particles is analysed as for 
two elements with a specific rigidity, arranged in series. The rigidities of elements 
1 and 2 in contact are therefore

 

1 1
,1

1

,n
E Ak
d

=
 

(17)

 

2 2
,2

2

,n
E Ak
d

=
 

(18)

where E1 and E2 are element elasticity moduli, d1 and d2 are the assumed lengths 
of hypothetical elastic elements corresponding to the discrete elements, while A1 
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and A2 are the surface areas of “cross-sections” of the elastic elements. Ultimately, 
the local rigidity of contact of two given discrete elements is

 

,1 ,2

,1 ,2

.n n
n

n n

k k
k

k k
⋅

=
+  (19)

In order to determine sliding and rolling friction resistance, an approach discus-
sed, for example in [14], was used. Rigidity at the tangent direction was assumed 
as ks = knvc, where vc is the so-called Poisson’s ratio for local contact. Rolling resi-
stance rigidity kθ = βksr1r2, where β is a certain proportionality ratio, while r1 and 
r2 are radii of the elements in contact. Rolling friction factor f = ε · rsr, where rsr is 
the average length of the radius of two elements in contact.

The values of all parameters listed in this and the previous section need to be 
defined appropriately for the type of granular medium, its fractions, shape of ele-
ments and the properties of their surface.

In the software used in this study the contact interactions included the axial and 
tangent force. As internal friction in a gravel medium is the result of the combined 
effects of sliding friction and rolling resistance between particles, rolling friction 
is also taken into account in the contact between elements of the soil medium. 
A summary of the model’s parameters related to material characteristics and ele-
ment contact, together with their respective symbols, is shown in Tables 1 and 2. 
The indexed symbols mean the given material or pairs of surfaces in contact.

Table 1
Material parameters of the numerical model

Material parameter
Material

soil medium (gravel) lining (HDPE)

Young’s modulus Ez Eob

Particle density ρz ρob

Table 2
Contact parameters of the numerical model

Contact parameter
Contact type

gravel – gravel lining – lining lining – gravel edge – gravel

Poisson’s ratio c
zν

c
obν c

ob zν −
c c
b z zν ν− =

proportionality ratio for defi-
ning rolling resistance rigidity βz absent βob–z βb–z

sliding friction factor μz absent μob–z μb–z

parameter for defining  
the rolling resistance factor εz absent εob–z εb–z

viscous damping factor αc,z absent αc,ob–z αc,b–z
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4. Laboratory tests

As has been mentioned earlier, the correctness of DEM analysis results depends 
on the assumed model parameters. In the case in question, it will be these elements 
in particular that characterise the internal resistance of a granular medium. Therefore 
they need to be determined, for example using experimental tests. In this study, 
a non-densified gravel granular medium was considered. Parameter models were 
sought for in an indirect manner. This involved placing a flexible cylindrical tunnel 
lining in the soil medium. The growing quasi-static load applied caused changes 
in the structure of the soil. These changes caused deformations of the lining, which 
were recorded. The problem of theoretical calculation of these deformations was 
solved using author’s DEM software, where various sets of the given internal para-
meters were used. A set was sought that would represent the lining’s deformations 
with the smallest error.

Laboratory tests were conducted using a box with transparent polycarbonate 
walls — Fig. 5. The test space dimensions of the box were 0.90 × 0.58 m. The external 
walls were strengthened with metal clamping plates on both sides and local lateral 
braces. The side walls were covered with a friction reducing agent on the inside.

Fig. 5. View of the test station

As the soil medium, gravel with Φel = 2 ÷ 4 mm grains was used. Bulk density 

of the non-densified soil was calculated as  , 3

kg1524 ,
mo z =  the particle density 
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of the soil was , 3

kg2550 .
ms z =  The value of the internal friction angle for loose 

gravel, determined in a direct shear test, was φz = 37,6°. On this basis, the active 
pressure factor of Ka = 0,24 was calculated.

A flexible cylindrical lining made of high-density polyethylene (HDPE), with 
a diameter of 90 mm and wall thickness of 0.75 mm was placed in the soil medium. 
The length of the lining corresponded to the internal length of the box, which was 
Lob = 143 mm. Based on the tension test, the mean Young’s modulus value for HDPE 

Eob = 500 MPa was calculated. Material density was determined as  3

kg1100 .
mob =

Gravel was poured on the lining in the box up to the assumed layer height, 
in this case equal to the lining’s diameter, i.e. 90 mm. The external load, applied 
in the surcharge surface symmetrically to the vertical axis of the lining, was a bag 
filled with a gradually increased amount of gravel. This enabled a more uniform 
distribution of the external load. The resultant force of the constant load grew during 
the test from 0 to 1250 N. The width of the field under load was 450 mm. Twelve 
markers were attached to the perimeter of the lining, which served as measurement 
points during displacement analysis. The test model during loading and the lining 
marker arrangement are shown in Figure 6.

Fig. 6. Test station during loading and marker arrangement on the perimeter of the flexible cylindrical 
lining

Markers were also placed inside — this can be seen in Fig. 6. However, direct 
recording of framework deformation changes did not prove to be useful for dra-
wing conclusions on the values of internal soil resistance parameters. Tunnel lining 
deformation was measured by digital photography using a Canon EOS 400D Digital 
camera. Before the tests were commenced, pixel size was determined — the number 
of pixels in an image corresponding to a unit of actual length. Next, images were 
taken at equal time intervals during the entire lining deformation process. X and 
Y coordinates for each marker, determined before and after the tests and specified 
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in pixels in the images, were used to determine the actual changes in positions 
of these points in space. Laboratory test results were calculated as averages of the two 
tests conducted. They are presented in section 6, together with a comparison to 
the displacement values obtained numerically using the discrete element method.

5. Numerical model of tunnel lining interaction  
with the loaded soil medium

The author’s software was used to model the system built in the laboratory 
tests. The soil was modelled using cylindrical elements — such a description can 
be considered as representing a flat state of stress (2D). Attempts at analyses using 
a 3D model led to very long computation times without a marked qualitative change 
in the results, and for this reason the model was abandoned.

The numerical simulations were conducted on a medium containing 43,756 
cylinders corresponding to the analysed gravel medium. A list of parameters used 
to numerically define the medium and lining has already been provided in Tables 1 
and 2. A sample numerical model is graphically shown in Figs. 7 and 8. The width 
of the soil medium along the X axis was 80 cm. Because the system was reduced to 
a two-dimensional form, the maximum diameter of the discrete elements was reduced 
compared to the corresponding maximum gravel grain diameter in the laboratory 
tests. Thus the dimensions of the cylindrical elements were 2 2.5 mm.DEM

elΦ = ÷  
The maximum (end) value of the resultant force of surcharge load Q was 1250 N. 
As in the laboratory test, it was applied as an evenly distributed load, symmetrically 
to the vertical axis of the tunnel lining. The time step defined based on its critical 
value and on observations of stability and convergence of numerical solutions was 
set as Δt = 5.5 · 10–7s. The total number of time steps, encompassing the time of load 
increase and system stabilisation, was 4,500,000. Based on an analysis of particle 
behaviour during the end period of the simulation, it was determined that the model 
can generally be treated as quasi-static.

Fig. 7. Discrete DEM model
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The cylindrical lining with a 0.75 mm thickness was modelled as a ring with 
a wall composed of 5,239 cylindrical elements with a 0.2 mm diameter. In this 
manner, the actual thickness could approximately be achieved. In the computer 
program it was assumed that the lining construction reacted in a perfectly elastic 
manner. Fig. 8 shows an illustration of the possible imperfections affecting resistance 
in the contact area of the numerically modelled gravel medium with a cylindrical 
lining. They are generated intrinsically during the preparation process of the initial 
state of the medium for the purposes of numerical analysis. They can therefore be 
treated as deviations from the perfect state — a certain dose of realism in the nume-
rical model, bringing it closer to reality.

6. Calibration of the numerical model

Performing a simulation of the behaviour of a discrete medium requires defi-
ning the values of the parameters characterising its numerical model. These para-
meters were preliminarily divided — considering their impact — into two groups, 
primary and secondary. The most important factors were considered those that 
decided the rigidity of the soil structure and the tunnel lining, as well as certain 
imperfections in the structure of the soil. Therefore, primary parameters included 
those that describe contact between elements of the soil medium and mutual con-
tact of the lining’s elements. Secondary parameters included all other values, e.g. 
the damping and rigidity factors that should enable achieving specific medium 
resistance values while maintaining stability of the computation.

Fig. 8. A close-up on the tunnel lining
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Poisson’s ratio for mutual contact of lining elements was defined as equal to 
Poisson’s ratio for HDPE 0.45.c

ob = The elasticity modulus of the soil elements was 
defined as  9 MPa,zE = , and Poisson’s ratio as  0.15,c

z =  which ensured its sufficient 
rigidity and enabled achieving the required friction resistances. In all preliminary 
analysis simulations of secondary parameters, the same sliding μz = 0.3 and rolling 
friction εz = 0.3 parameters were assumed, as these are primary parameters. After 
verification, due to the minimal impact, the proportionality parameters for deter-
mining the rolling friction of edge-gravel and lining-gravel contact were classified 
as secondary parameters. These were set as βb–z = 0.04 and βob–z = 0.04. The parameter 
determining the rolling resistance of edge-gravel contact was set as εb–z = 0.3. For 
any type of cohesionless contact, the parameter for determining viscous damping 
was set as αc = 0.5. No external damping was introduced in the description of soil 
medium element motion.

During preliminary analyses, the effects of changing individual parameters 
on the behaviour of the numerical model were investigated — any differences 
in deformations of the lining or its surrounding medium were compared. Due to 
the significant number of results, only end conclusions drawn on their basis are 
presented here. Specifically, no major effect of increasing the weight of the lining to 

the value of  3

kg10000 
mob =  were observed. This increase was done due to the incre-

ased critical step value, and consequently the ability to use much longer time steps 
in the numerical procedure. This saved a significant amount of time on the duration 
of the numerical analyses.

No major effect of changes in Poisson’s ratio values in the lining’s contact with 
the soil were observed, and consequently no variants of it were used. Because 
the box walls in the laboratory test were covered with a friction preventing agent, 
the coefficients of sliding friction between the soil medium and edge were limited to 
the value of 0.3. A similar limit value was set for sliding friction in contact between 
the lining and the soil medium — it is a contact modelling the interface between 
polyethylene and the gravel. In both cases, as well as for the rolling friction factor 
for the contact between lining and soil medium elements, no major effects of said 
parameters on lining deformation and the behaviour of its surrounding soil medium 
were observed. During the last phase of the preliminary tests, mainly the stability 
of the numerical process at the given value of the proportionality factor βz used to 
determine the rolling resistance rigidity was verified, up to values resulting in loss 
of said stability. Ultimately, βz = 50 was adopted as the value that enabled achieving 
the right rolling resistances without loss of computation stability. Also in the other 
contact types, βb–z =50 and βob–z = 50 were ultimately set. The final parameters 
defined after preliminary analyses are summarised in Table 3.
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Table 3
Contact parameters defined after the preliminary analysis series

Contact parameter
Contact type

gravel – gravel lining – lining lining – gravel edge – gravel

Poisson’s ratio 0.15c
zν = 0.45c

obν = 0.3c
ob zν − = 0.15c

b zν − =

proportionality ratio for 
defining rolling resistance 
rigidity

βz = 50 absent βob–z = 50 βb–z = 50

sliding friction factor
analysed du-
ring the main 

phase
absent μob–z = 0.1 μb–z = 0.1

parameter for defining 
the rolling resistance factor

analysed du-
ring the main 

phase
absent εob–z = 0.1 εb–z = 0.1

viscous damping factor αc,z = 0.5 absent αc,ob–z = 0.5 αc,b–z = 0.5

During the final identification stage, simulations were performed where the varia-
bles were only the parameters of sliding friction μz and rolling friction εz between 
elements modelling the soil medium. These are two most important parameters that 
decide the magnitude of deformation of the medium and its load-bearing capacity 
under the contact rigidity parameters defined earlier. The values of these parameters 
were sought for within the μz = (0.1 ÷ 0.7) and εz= (0.1÷0.7) ranges.

Among all the analyses performed, those were selected where tunnel lining 
destruction — i.e. loss of stability — did not occur. In order to finally define 
the model closest to reality, displacements of measurement points arranged along 
the lining’s perimeter (Fig. 6) in DEM simulations (Δ DEM) were compared with 
corresponding displacements of markers in the laboratory tests (Δ LAB). Based 
on the differences in their values, the total relative error was calculated for each 
case using the following formula

 

24
, ,

1 ,

,DEM i LAB i
W

i LAB i


=

∆ − ∆
=

∆∑ ∑
 

(20)

and total squared error using

 
( )

24 2

, ,
1

.K DEM i LAB i
i


=

 = ∆ − ∆ ∑ ∑
 

(21)

Several such cases and their μz and εz values are shown in Table 4. The error values 
calculated for these cases using formulas 20 and 21 are shown in Table 5.
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Table 4
Friction parameter combinations not causing lining destruction, determined  

after the main simulation phase

Simulation No.
Model parameter

µz εz

1 0.50 0.10

2 0.70 0.10

3 0.25 0.40

4 0.30 0.40

Table 5
Error values in DEM simulations compared to laboratory results

Kϑ∑ Wϑ∑
Δ DEM (1) 5.37 13.19

Δ DEM (2) 5.57 11.71

Δ DEM (3) 3.08 11.44

Δ DEM (4) 4.09 13.36

These values indicate that the lowest relative and squared error occurred 
in DEM simulation no. 3. The parameter set used in this simulation was accepted 
as characterising the soil medium that is the closest representation of the behaviour 
of the system used in the laboratory tests.

Fig. 9. Distribution of tunnel lining points displacement values according to DEM simulation (3) 
and obtained from laboratory tests
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Figure 9 shows a graphical illustration of the distribution of tunnel lining 
displacement values obtained in the laboratory test, compared to corresponding 
displacements from the DEM simulation with the lowest error (no. 3). The consi-
stent signs of displacements in all cases of vertical and horizontal displacement is 
notable, as it indicates a good description of the form of tunnel lining deformation 
in the numerical simulation.

7. Summary

The study proved that tunnel lining behaviour in non-cohesive soil was modelled 
correctly using the numerical discrete element method. In order to perform the nume-
rical analyses, it was necessary to build a model of the whole system subjected to 
the laboratory test, so that the actual conditions and reactions of the test medium and 
its model structure could be represented as closely as possible. The process of iden-
tifying the parameters of such numerical models was demonstrated, which involved 
comparing the deformations of the actual tunnel lining loaded in the laboratory 
test with the virtual model. Some material parameters of the numerical model that 
have physical equivalents were defined based on direct tests of the lining material 
and soil, while the others were defined indirectly through tests, selecting the model 
with the deformations closest to real values.

The analysis demonstrated that the most important soil parameters, which deci-
ded the soil structure load-bearing capacity and tunnel lining deformations, were 
sliding and rolling friction factors in this case. The final numerical model enables 
taking into account the interactions between soil and lining during the loading 
process, and also enables representing the imperfections of contact between soil 
grains, which can evolve during structure deformation. These abilities are gained 
precisely due to using discrete methods, which for such models have a specific 
advantage over continuous modelling.

The study has been carried out within the framework of the statutory research no. 934, carried out 
in the Faculty of Civil Engineering and Geodesy of the Military University of Technology.
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P. SZKLENNIK

Identyfikacja parametrów modelu numerycznego obudowy tunelowej  
w gruncie niespoistym

Streszczenie. W pracy przedstawiono identyfikację parametrów modelu numerycznego modelowej 
obudowy tunelowej w ośrodku gruntowym według metody elementów dyskretnych. Wykorzystano 
autorski program oparty na metodzie elementów dyskretnych. W celu określenia parametrów 
modelu komputerowego charakteryzujących obudowę i ośrodek gruntowy przeprowadzono badania 
laboratoryjne. Kalibrację modelu numerycznego wykonano przez porównanie deformacji obudowy 
występującej w badaniu laboratoryjnym i symulacji numerycznej. Przemieszczenia obudowy podczas 
badań laboratoryjnych wyznaczano za pomocą fotografii cyfrowej.
Słowa kluczowe: budownictwo, metoda elementów dyskretnych, obudowa walcowa
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