PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A note on the potential impact of aviation emissions on jet stream propagation over the northern hemisphere

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The goal of the study was to investigate if aviation emissions could infuence the climate and weather by modifying the chemical composition of the atmosphere and subsequently, the radiative balance. To carry out the set objective, we used the global environmental multiscale atmospheric chemistry model with comprehensive tropospheric and stratospheric chemistry that is interactive with the radiation calculations. The model was run for two current climate scenarios, with and without aviation emissions. The results of the study indicate that the most signifcant diference in the jet stream propagation occurred during the winter season, and the smallest was observed during summer. Changes in the jet stream propagation vary by season and region. During the colder time of the year, the eddy-driven jet stream tends to shift poleward, while during the spring season the equatorward shift was observed in a scenario with aviation emissions. Analysis of regional changes shows that the most noticeable diferences occurred over the Pacifc Ocean, Atlantic Ocean and Asia. The changes over the oceans changed the occurrence of the North Pacifc and Bermuda–Azores Highs. Over Asia (Siberia), a stronger and more poleward drift of the eddy-driven jet stream was observed in a scenario without aviation emission. Dissimilarity in the jet stream velocity was found only during the winter seasons when in a scenario with aviation emission, the jet stream velocity was 10 m/s smaller as compared to the scenario without aviation emission.
Czasopismo
Rocznik
Strony
1187--1199
Opis fizyczny
Bibliogr. 50 poz.
Twórcy
  • Institute of Geophysics, Polish Academy of Sciences, Ksiecia Janusza 64 Street, 01-452 Warsaw, Poland
  • Institute of Geophysics, Polish Academy of Sciences, Ksiecia Janusza 64 Street, 01-452 Warsaw, Poland
  • WxPrime Corporation, 21 St. Clair Ave East, Suite 1005, Toronto, ON M4T 1L9, Canada
Bibliografia
  • 1. Barnes EA, Polvani L (2013) Response of the Midlatitude jets, and of their variability, to increased greenhouse gases in the CMIP5 models. J Clim 26:7117–7135. https://doi.org/10.1175/JCLI-D-12-00536.1
  • 2. Barnes EA, Screen JA (2015) The impact of Arctic warming on the midlatitude jet-stream: Can it? Has it? Will it? Wiley Interdiscip Rev Clim Change 6:277–286. https://doi.org/10.1002/wcc.337
  • 3. Barnes EA, Simpson IR (2017) Seasonal sensitivity of the Northern Hemisphere jet streams to arctic temperatures on subseasonal time scales. J Clim 30:10117–10137. https://doi.org/10.1175/JCLI-D-17-0299.1
  • 4. Brasseur GP (coordinating lead author) et al (2008) Aviation climate change research initiative: a report on the way forward based on the review of research gaps and priorities, Federal Aviation Administration, avaliable from: https://www.faa.gov/about/office_org/headquarters_offices/apl/research/science_integrated_modeling/accri/media/ACCRI_Report_final.pdf. Accessed 22 May 2019
  • 5. Christenson CE, Martin JE, Handlos ZJ (2017) A Synoptic climatology of Northern Hemisphere, cold season polar and subtropical jet superposition events. J Clim 30:7231–7246. https://doi.org/10.1175/JCLI-D-16-0565.1
  • 6. Cohen J, Screen JA, Furtado JC et al (2014) Recent arctic amplification and extreme mid-latitude weather. Nat Geosci 7:627–637. https://doi.org/10.1038/ngeo2234
  • 7. de Grandpré J, Beagley SR, Fomichev VI et al (2000) Ozone climatology using interactive chemistry: results from the Canadian middle atmosphere model. J Geophys Res Atmos 105:26475–26491. https://doi.org/10.1029/2000JD900427
  • 8. Forster PMD, Shine KP (1997) Radiative forcing and temperature trends from stratospheric ozone changes. J Geophys Res 102:10841. https://doi.org/10.1029/96JD03510
  • 9. Frömming C, Ponater M, Dahlmann K et al (2012) Aviation-induced radiative forcing and surface temperature change in dependency of the emission altitude: emission altitude and aviation impact. J Geophys Res Atmos. https://doi.org/10.1029/2012JD018204
  • 10. Garfinkel CI, Hartmann DL (2010) Influence of the quasi-biennial oscillation on the North Pacific and El Niño teleconnections. J Geophys Res Atmos. https://doi.org/10.1029/2010JD014181
  • 11. Gettelman A, Hoor P, Pan LL et al (2011) The extratropical upper troposphere and lower stratosphere. Rev Geophys 49:RG3003. https://doi.org/10.1029/2011RG000355
  • 12. Grandpré J, Ménard R, Rochon YJ et al (2009) Radiative impact of ozone on temperature predictability in a coupled chemistry-dynamics data assimilation system. Mon Wea Rev 137:679–692. https://doi.org/10.1175/2008MWR2572.1
  • 13. Grewe V, Dameris M, Fichter C, Lee DS (2002) Impact of aircraft NOx emissions. part 2: effects of lowering the flight altitude. Meteorol Z 11:197–205. https://doi.org/10.1127/0941-2948/2002/0011-0197
  • 14. Haigh JD, Blackburn M, Day R (2005) The response of tropospheric circulation to perturbations in lower-stratospheric temperature. J Clim 18:3672–3685. https://doi.org/10.1175/JCLI3472.1
  • 15. Hall R, Erdélyi R, Hanna E et al (2015) Drivers of North Atlantic polar front jet stream variability. Int J Climatol 35:1697–1720. https://doi.org/10.1002/joc.4121
  • 16. Hegglin MI, Gettelman A, Hoor P et al (2010) Multimodel assessment of the upper troposphere and lower stratosphere: extratropics. J Geophys Res 115:D00M09. https://doi.org/10.1029/2010JD013884
  • 17. Holton JR, Haynes PH, McIntyre ME et al (1995) Stratosphere–troposphere exchange. Rev Geophys 33:403–439. https://doi.org/10.1029/95RG02097
  • 18. Hu S, Vallis GK (2019) Meridional structure and future changes of tropopause height and temperature. Q J R Meteorol Soc 145:2698–2717. https://doi.org/10.1002/qj.3587
  • 19. IPCC AR5, Eds 2014 Climate change 2013—The physical science basis: working group I contribution to the fifth assessment report of the intergovernmental panel on climate change Cambridge University Press Cambridge
  • 20. Jacobson MZ, Wilkerson JT, Balasubramanian S et al (2012) The effects of rerouting aircraft around the arctic circle on arctic and global climate. Clim Change 115:709–724. https://doi.org/10.1007/s10584-012-0462-0
  • 21. Jensen EJ, Toon OB, Selkirk HB et al (1996) On the formation and persistence of subvisible cirrus clouds near the tropical tropopause. J Geophys Res Atmos 101:21361–21375. https://doi.org/10.1029/95JD03575
  • 22. Kaminski JW, Neary L, Struzewska J et al (2008) GEM-AQ, an on-line global multiscale chemical weather modelling system: model description and evaluation of gas phase chemistry processes. Atmos Chem Phys 8:3255–3281. https://doi.org/10.5194/acp-8-3255-2008
  • 23. Kim BY, Fleming GG, Lee JJ et al (2007) System for assessing aviation’s global emissions (SAGE), part 1: model description and inventory results. Transp Res Part D Transp Environ 12:325–346. https://doi.org/10.1016/j.trd.2007.03.007
  • 24. Koch P, Wernli H, Davies HC (2006) An event-based jet-stream climatology and typology. Int J Climatol 26:283–301. https://doi.org/10.1002/joc.1255
  • 25. Kuang X, Zhang Y, Huang Y, Huang D (2014) Spatial differences in seasonal variation of the upper-tropospheric jet stream in the Northern Hemisphere and its thermal dynamic mechanism. Theor Appl Climatol 117:103–112. https://doi.org/10.1007/s00704-013-0994-x
  • 26. Lamarque J-F, Emmons LK, Hess PG et al (2012) CAM-chem: description and evaluation of interactive atmospheric chemistry in the community earth system model. Geosci Model Dev 5:369–411. https://doi.org/10.5194/gmd-5-369-2012
  • 27. Lee DS, Fahey DW, Forster PM et al (2009) Aviation and global climate change in the twentyfirst century. Atmos Environ 43:3520–3537. https://doi.org/10.1016/j.atmosenv.2009.04.024
  • 28. Lee DS, Pitari G, Grewe V et al (2010) Transport impacts on atmosphere and climate: aviation. Atmos Environ 44:4678–4734. https://doi.org/10.1016/j.atmosenv.2009.06.005
  • 29. Linz M, Chen G, Hu Z (2018) Large-scale atmospheric control on non-gaussian tails of midlatitude temperature distributions. Geophys Res Lett 45:9141–9149. https://doi.org/10.1029/2018GL079324
  • 30. Lund MT, Aamaas B, Berntsen T et al (2017) Emission metrics for quantifying regional climate impacts of aviation. Earth Syst Dynam 8:547–563. https://doi.org/10.5194/esd-8-547-2017
  • 31. Lupu A, Semeniuk K, Kaminski JW, McConnell JC (2013) GEM-AC: a stratospheric-tropospheric global and regional model for air quality and climate change-evaluation of gas-phase properties. In: Bernath PF (ed) The atmospheric chemistry experiment ACE at 10: a solar occultation anthology. A. Deepak Publishing, Hampton, Virginia, USA, pp 285–293
  • 32. Mamun A, Semeniuk K, Kaminski JW, McConnell JC (2013) Evaluation of stratospheric temperature and water vapor from GEM using ACE-FTS and MLS measurements. In: Bernath PF (ed) The atmospheric chemistry experiment ACE at 10: A solar occultation anthology. A. Deepak Publishing, Hampton, Virginia, U.S.A, pp 295–302
  • 33. Melamed-Turkish K, Taylor PA, Liu J (2018) Upper-level winds over eastern North America: a regional jet stream climatology. Int J Climatol 38:4740–4757. https://doi.org/10.1002/joc.5693
  • 34. Olsen SC, Brasseur GP, Wuebbles DJ et al (2013a) Comparison of model estimates of the effects of aviation emissions on atmospheric ozone and methane. Geophys Res Lett. https://doi.org/10.1002/2013GL057660
  • 35. Olsen SC, Wuebbles DJ, Owen B (2013b) Comparison of global 3-D aviation emissions datasets. Atmos Chem Phys 13:429–441. https://doi.org/10.5194/acp-13-429-2013
  • 36. Pena-Ortiz C, Gallego D, Ribera P et al (2013) Observed trends in the global jet stream characteristics during the second half of the 20th century. J Geophys Res Atmos 118:2702–2713. https://doi.org/10.1002/jgrd.50305
  • 37. Penner JE (1999) Aviation and the global atmosphere: a special report of the intergovernmental panel on climate change. Cambridge University Press
  • 38. Rikus L (2018) A simple climatology of westerly jet streams in global reanalysis datasets part 1: mid-latitude upper tropospheric jets. Clim Dyn 50:2285–2310. https://doi.org/10.1007/s00382-015-2560-y
  • 39. Shepherd TG (2007) Transport in the middle atmosphere. J Meteorol Soc Jpn Ser II 85B:165–191. https://doi.org/10.2151/jmsj.85B.165
  • 40. Shepherd TG (2002) Issues in stratosphere-troposphere coupling. J Meteorol Soc Jpn Ser II 80:769–792. https://doi.org/10.2151/jmsj.80.769
  • 41. Simpson IR, Blackburn M, Haigh JD (2012) A mechanism for the effect of tropospheric jet structure on the annular mode-like response to stratospheric forcing. J Atmos Sci 69:2152–2170. https://doi.org/10.1175/JAS-D-11-0188.1
  • 42. Skowron A, Lee DS, De León RR (2015) Variation of radiative forcings and global warming potentials from regional aviation NOx emissions. Atmos Environ 104:69–78. https://doi.org/10.1016/j.atmosenv.2014.12.043
  • 43. Søvde OA, Matthes S, Skowron A et al (2014) Aircraft emission mitigation by changing route altitude: a multi-model estimate of aircraft NOx emission impact on O3 photochemistry. Atmos Environ 95:468–479. https://doi.org/10.1016/j.atmosenv.2014.06.049
  • 44. Strong C, Davis RE (2007) Winter jet stream trends over the Northern Hemisphere. Q J R Meteorol Soc 133:2109–2115. https://doi.org/10.1002/qj.171
  • 45. Sun L, Chen G, Lu J (2013) Sensitivities and mechanisms of the zonal mean atmospheric circulation response to tropical warming. J Atmos Sci 70:2487–2504. https://doi.org/10.1175/JAS-D-12-0298.1
  • 46. Wilkerson JT, Jacobson MZ, Malwitz A et al (2010) Analysis of emission data from global commercial aviation: 2004 and 2006. Atmos Chem Phys 10:6391–6408. https://doi.org/10.5194/acp-10-6391-2010
  • 47. WMO (1957) Meteorology—a three-dimensional science: Second session of the commission for aerology. WMO Bull 4:134–138
  • 48. Xue D, Lu J, Sun L et al (2017) Local increase of anticyclonic wave activity over Northern Eurasia under amplified arctic warming. Geophys Res Lett 44:3299–3308. https://doi.org/10.1002/2017GL072649
  • 49. Yang H, Waugh DW, Orbe C et al (2019) Large-scale transport into the arctic: the roles of the midlatitude jet and the hadley Cell. Atmos Chem Phys 19:5511–5528. https://doi.org/10.5194/acp-19-5511-2019
  • 50. Zolotov SY, Ippolitov II, Loginov SV (2018) Characteristics of the subtropical jet stream over the North Atlantic from reanalysis data. IOP Conf Ser Earth Environ Sci 211:012005. https://doi.org/10.1088/1755-1315/211/1/012005
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4420c107-a000-4bc2-b2cb-fe6ad353abb5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.