PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Masowy rozkład pierwiastków w próbkach pyłu zawieszonego pobranych w obszarze tła miejskiego: wyniki ośmiomiesięcznych badań w Zabrzu

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Mass Size Distribution of PM-bound Elements at an Urban Background Site: Results of an Eight-month Study in Zabrze
Języki publikacji
PL
Abstrakty
EN
The analysis of elemental composition of ambient dust can help not only evaluate the environmental and health effects due to the air pollution but also identify emission sources. However, the whole number of projects and studies on concentrations and elemental composition of ambient (especially fine) dust hardly concern these issues in Eastern Europe. Neither is the chemical (and elemental) composition of the submicron ambient dust in Poland well recognized. There is also a shortage of data from long-term and parallel studies of the elemental composition of separate dust fractions. In the heavily polluted areas, the elemental composition of atmospheric aerosol and the dependence of elemental composition of particles on their size can appear essential for analyzing the toxicity of dust and its environmental effects. This study presents the results of determination and comparison of the elemental composition of four fractions of ambient dust in Zabrze (Poland), an urban area typical of the exposure of the Upper-Silesian Agglomeration population to the polluted air. The samples of the four dust fractions (fine: ≤1 µm – PM1, 1–2.5 µm – PM1-2.5, coarse: 2.5–10 µm – PM2.5-10, and 10–40 µm – PM10-40,) were collected during eight months (January–August 2009) with the use of a DEKATI-PM10 cascade impactor. All the dust samples (204 samples) were analyzed using a PANalytical Epsilon 5 spectrometer (EDXRF – energy dispersive X-Ray fluorescence spectroscopy). The minimum, maximum and average concentrations, for winter (January–April, heating season) and summer (May–August, non-heating season), of 38 elements from each of the four examined dust fractions were calculated. The influence of anthropogenic sources on the ambient concentrations of elements from each dust fraction was determined by analyzing the enrichment factors (EF). The strength of linear relationships (Pearson’s linear correlation coefficients) between each pair of elements was determined separately for fine and coarse dust. The highest ambient concentrations were assumed by two nonmetals – sulfur and chlorine; their concentrations were significantly lower in summer than in winter. Both sulfur and chlorine were mainly bound onto the finest particles. Their share in the coarse dust, even in summer, was small. They came from anthropogenic sources. Ambient, typical crustal, Si, Al, Fe, Mg, K, Ca, Ti, Sr, Rb in Zabrze came from natural sources regardless of the fraction they were bound to. Small seasonal variations in ambient concentrations of these elements or some of the concentrations higher in summer than in winter confirmed the fact. A significant portion of the mass of the crustal elements, especially of Al, Si and Fe, was concentrated in the coarse fractions. However, the mass distribution among the dust fractions indicates some of them (K, Ca, Mg, Rb, Sr) as coming partly from anthropogenic sources. It particularly concerns their part bound to fine dust in winter. The mass contribution of crustal matter to ambient dust was about 6.8 in winter and 9.7% in summer; the contribution to PM1 was half of it. Almost all remaining 27 elements (except for Mn, Zn, Ge, Sb, La) had the ambient concentrations not greater than 100 ng m-3, usually higher in winter. The average mass shares of each of these 27 elements in PM1, PM1-2.5, PM2.5-10, and PM10-40, were different and depended on the season of a year. Co, Cu, Zn, Pb and As were cumulated mostly in fine dust, while V, Mn, Co, Cr, Ni, Ag, Cd and Ba in coarse dust. The former, in fine dust, were assumed to be rather of anthropogenic origin and closely associated with combustion. The later originated partly from combustion (especially in winter) but their greater part was secondary and came from road dust. The largest contributors to the mass of the elements in fine dust in Zabrze are domestic furnaces and car engines, i.e. combustion of fossil fuels, biomass, and waste. The possible effect of industrial sources was also identified. The elemental composition of coarse dust is due to re-suspension of soil and road dust, and to a lesser extent, to municipal emission.
Rocznik
Strony
1022--1040
Opis fizyczny
Bibliogr. 52 poz., tab.
Twórcy
  • Instytut Podstaw Inżynierii Środowiska PAN, Zabrze
  • Instytut Podstaw Inżynierii Środowiska PAN, Zabrze
  • Instytut Podstaw Inżynierii Środowiska PAN, Zabrze
  • Instytut Podstaw Inżynierii Środowiska PAN, Zabrze
autor
  • Instytut Podstaw Inżynierii Środowiska PAN, Zabrze
autor
  • Instytut Podstaw Inżynierii Środowiska PAN, Zabrze
Bibliografia
  • 1. Arditsoglou A., Samara C.: Levels of total suspended particulate matter and major trace elements in Kosovo: a source identification and apportionment study. Chemosphere 59, 669–678 (2005).
  • 2. Begun B.A., Hopke P.K., Zhao W.: Source identification of fine particles in Washington, DC, by expanded factor analysis modeling. Environmental Science & Technology 39, 1129–1137 (2005).
  • 3. Chueinta W., Hopke P.K., Paatero P.: Investigation of sources of atmospheric aerosol urban and suburban residential areas in Thailand by positive matrix factorization. Atmospheric Environment 34, 3319–3329 (2000).
  • 4. Conklin D.J.: Beware the Air! Why Particulate Matter Matters. Circulation Research 108, 644–647 (2011).
  • 5. Costa D.L., Dreher K.L.: Bioavailable transition metals in particulate matter mediate cardiopulmonary injury in healthy and compromised animal models. Environmental Health Perspectives 105, 1053–1060 (1997).
  • 6. de Kok T.M.C.M., Driece H.A.L., Hogervorst J.G.F., Briedé J.J.: Toxicological Assessment of Ambient and Traffic-Related Particulate Matter: A Review of Recent Studies. Mutation Research 613, 103–122 (2006).
  • 7. Dreher K.L.: Particulate matter physicochemistry and toxicology: in search of causality – a critical perspective. Inhalation Toxicology 12, 45–57 (2000).
  • 8. Duffus J.H.: “Heavy metals” a meaningless term? Pure and Applied Chemistry 74, 793–807 (2002).
  • 9. Englert, N.: Fine particles and human health – a review of epidemiological studies. Toxicology Letters, 149, 235–242 (2004).
  • 10. Houthuijs, D., Breugelmans, O., Hoek, G., Vaskövi, Ė., Micháliková, E., Pastuszka, J. S., Jirik, V., Sachelarescu, S., Lolova, D., Meliefste, K., Uzunova, E., Marinescu, K., Volf, J., de Leeuw, F., van de Wiel, H., Flecher, T., Lebret, E., Brunekreef, B.: PM-10 and PM-2.5 concentrations in Central and Eastern Europe: results from the CESAR study. Atmospheric Environment 35, 2757–2771 (2001).
  • 11. Huszar P., Juda-Rezler K., Halenka T., Chervenkov H., Syrakov D., Krueger B. C., Zanis P., Melas D., Katragkou E., Reizer M., Trapp W., Belda M.: Effects of climate change on ozone and particulate matter over Central and Eastern Europe. Climate Research, 50, 51–68 (2011).
  • 12. Juda-Rezler K., Reizer M., Oudinet J.-P.: Determination and analysis of PM10 source apportionment during episodes of air pollution in Central Eastern European urban areas: The case of wintertime 2006. Atmospheric Environment 45, 6557–6566 (2011).
  • 13. Kappos A. D.: Health Risks of Urban Airborne Particles [w]: Environmental Science and Engineering 5, 527–551 (2011).
  • 14. Klejnowski K., Kozielska B., Krasa A., Rogula-Kozłowska W.: Polycyclic aromatic hydrocarbons in PM1, PM2.5, PM10 and TSP in the Upper Silesian Agglomeration, Poland. Archives of Environmental Protection 36, 65–72 (2010).
  • 15. Klejnowski K., Krasa A., Rogula-Kozłowska W.: Seasonal variability of concentrations of total suspended particles (TSP) as well as PM10, PM2.5 and PM1 modes in Zabrze, Poland. Archives of Environmental Protection 33, 15–29 (2007).
  • 16. Klejnowski K., Pastuszka J.S., Rogula-Kozłowska W., Talik E., Krasa A.: Mass size distribution and chemical composition of the surface layer of summer and winter airborne particles in Zabrze, Poland. Bulletin of Environmental Contamination and Toxicology 88, 255–259 (2012).
  • 17. Klejnowski K., Rogula-Kozłowska W., Krasa A.: Structure of atmospheric aerosol in Upper Silesia (Poland) – contribution of PM2.5 to PM10 in Zabrze, Katowice and Częstochowa in 2005–2007. Archives of Environmental Protection 35, 3–13 (2009).
  • 18. Kong S., Yaqin Ji, Bing Lu, Zhipeng Bai, Li Chen, Bin Han, Zhiyong Li: Chemical compositions and sources of atmospheric PM10 in heating, non-heating and sand periods at a coal-based city in northeastern China. Journal of Environmental Monitoring 14, 852–865 (2012).
  • 19. Lammel G., Rohrl A., Schreiber H.: Atmospheric lead and bromine in Germany. Post-abatement levels, variabilities and trends. Environmental Science and Pollution Research 9, 397–404 (2002).
  • 20. Laugh G.C., Schauer J.J., Park J.S., Shafer M.M., Deminter J.T., Weinstein J.P.: Emissions of metals associated with motor vehicle roadways. Environmental Science & Technology 39, 826–836 (2005).
  • 21. Lestari P., Oskouie A.K., Noll K.E.: Size distribution and dry deposition of particulate mass, sulfate and nitrate in an urban area. Atmospheric Environment 37, 2507–2516 (2003).
  • 22. Molina M.J., Molina L.T.: Megacities and Atmospheric Pollution. Journal of the Air & Waste Management Association 54, 644–680 (2004).
  • 23. Na K., Cocker III D.R.: Characterization and source identification of trace elements in PM2.5 from Mira Loma, Southern California. Atmospheric Research 93, 793–800 (2009).
  • 24. Ostro B., Feng W.Y., Broadwin R., Green S., Lipsett M.: The effects of components of fine particulate air pollution on mortality in California: results from CALFINE. Environmental Health Perspectives 115, 13–19 (2007).
  • 25. Parlament Europejski i Rada Unii Europejskiej Dyrektywa 2008/50/WE z dnia 21 maja 2008 r. w sprawie jakości powietrza i czystszego powietrza dla Europy (źródło: http://eur-lex.europa.eu/).
  • 26. Parmar R.S., Satsangi G.S., Kumari M., Lakhani A.: Study of size distribution of atmospheric aerosol at Agra. Atmospheric Environment 35, 693–702 (2001).
  • 27. Pastuszka J.S., Rogula-Kozłowska W., Zajusz-Zubek E.: Characterization of PM10 and PM2,5 and associated heavy metals at the crossroads and urban background site in Zabrze, Upper Silesia, Poland, during the smog episodes. Environmental Monitoring & Assessment 168, 613–627 (2010).
  • 28. Pawłowski L.: Jak metale ciężkie wpływają na rozwój zrównoważony. Rocznik Ochrona Środowiska (Annual Set the Environment Protection), 13, 51–64 (2011).
  • 29. Pope III C.A., Burnett R.T., Thun M.J., Cale E.E., Krewski D., Ito K., Thurston G.D.: Lung cancer, cardiopulmonary mortality and long-term exposure to fine particulate air pollution. Journal of American Medical Association 287, 1132–1141 (2002).
  • 30. Pope C.A., Dockery D.W.: Health effects of fine particulate air pollution: lines that connect. Journal of the Air & Waste Management Association 56, 709–74 (2006).
  • 31. Querol X., Viana M., Alastuey A. et al, Amato F., Moreno T., Castillo S., Pey J., de la Rosa J., Sánchez de la Campa A., Artíñano B., Salvador P., García Dos Santos S., Fernández-Patier R., Moreno-Grau S., Negral L., Minguillón M.C., Monfort E., Gil J.I., Inza A., Ortega L.A., Santamaría J.M., Zabalza J.: Source origin of trace elements in PM from regional background, urban and industrial sites of Spain. Atmospheric Environment 41, 7219–7231 (2007).
  • 32. Querol X., Alastuey A., Rodriguez S., Plana F., Ruiz C.R., Cots N., Massague G. & Puig O.: PM10 and PM2.5 source apportionment in the Barcelona Metropolitan area, Catalonia, Spain. Atmospheric Environment 35: 6407–6419 (2001).
  • 33. Rogula-Kozłowska W., Błaszczak B., Klejnowski K.: Concentrations of PM2.5, PM2.5–10 and PM-related elements at two heights in an urban background area in Zabrze (Poland). Archives of Environmental Protection 37, 31–47 (2011).
  • 34. Rogula-Kozłowska W., Błaszczak B., Szopa S., Klejnowski K., Sówka I., Zwoździak A., Jabłońska M., Mathews B.: PM2.5 in the central part of Upper Silesia, Poland: concentrations, elemental composition, and mobility of components. Environmental Monitoring and Assessment 185, 581–601 (2013).
  • 35. Rogula-Kozłowska W., Klejnowski K., Rogula-Kopiec P., Mathews B., Szopa S.: A study on the seasonal mass closure of ambient fine and coarse dusts in Zabrze, Poland. Bulletin of Environmental Contamination and Toxicology 88, 722–729 (2012).
  • 36. Rogula-Kozłowska W., Klejnowski K., Szopa S.: Concentrations of 42 elements in atmospheric fine particles in Zabrze, Poland. Environment Protection Engineering 34, 5–15 (2008).
  • 37. Rogula-Kozłowska W., Klejnowski K.: Submicrometer Aerosol in Rural and Urban Backgrounds in Southern Poland: Primary and Secondary Components of PM1. Bulletin of Environmental Contamination and Toxicology 90, 103–109 (2013).
  • 38. Rozporządzenie Ministra Środowiska z dnia 26 stycznia 2010 r. w sprawie wartości odniesienia dla niektórych substancji w powietrzu (Dz. U. z dnia 3 lutego 2010 r.)
  • 39. Saldarriaga-Noreña H., Hernández-Mena L., Murillo-Tovar M., López-López A., Ramírez-Muñíz M.: Elemental Contribution to the Mass of PM2.5 in Guadalajara City, Mexico. Bulletin of Environmental Contamination and Toxicology 86, 490–494 (2011).
  • 40. Sówka I., Łągiewka A., Zwoździak A., Skrętowicz M., Nych A., Zwoździak J.: Zastosowanie GIS do analizy przestrzennej stężeń pyłu PM2.5 oraz PM10 na terenie województwa dolnośląskiego. Rocznik Ochrona Środowiska (Annual Set the Environment Protection), 13, 1667–1678 (2011).
  • 41. Sternbeck J, Sjodin A., Andreasson K.: Metal emission from road traffic and the influence of resuspension – results from two tunnel studies. Atmospheric Environment 36, 4735–4744 (2002).
  • 42. Swaine D.J.: Why trace elements are important. Fuel Processing Technology 65–66, 21–33 (2000).
  • 43. Tiwari S., Chate D.M., Pragya P., Kaushar Ali, Deewan Singh Bisht: Variations in Mass of the PM10, PM2.5 and PM1 during the Monsoon and the Winter at New Delhi. Aerosol and Air Quality Research 12, 20–29 (2012).
  • 44. Tiwary A., Colls J.: Air Pollution. Measurement, modeling and mitigation Third edition. Taylor&Francis Group. London and New York. 2010.
  • 45. Tsai J.-H., Chang K.-L., Lin J.-J., Lin Y.-H., Chiang H.-L.: Mass-size distributions of particulate sulfate, nitrate, and ammonium in a particulate matter nonattainment region in southern Taiwan. Journal of the Air & Waste Management Association 55, 502–509 (2005).
  • 46. Vallius M, Janssen N.A.H., Heinrich J., Hoek G., Ruuskanen J., Cyrys J., Van Grieken R., Hartog J.J., Kreyling W.G., Pekkanen J.: Sources and elemental composition of ambient PM2.5 in three European cities. Science of the Total Environment 337, 147–162 (2005).
  • 47. Wedepohl K. H.: The composition of the continental crust. Geochimica et Cosmochimica Acta 59, 1217–1232 (1995).
  • 48. Wichmann H.-E.: Health effects of particles in ambient air. International Journal of Hygiene and Environmental Health 207, 399–407 (2004).
  • 49. Xiu C., Zhang D., Chen J., Huang X., Chen Z., Guo H., Pan J.: Characterization of major water-soluble inorganic ions in size-fractionated particulate matters in Shanghai campus ambient air. Atmospheric Environment 38, 227–236 (2004).
  • 50. Zhang W., Lei T., Lin Z.Q., Zhang H.S., Yang D.F., Xi Z.G., Chen J.H., Wang W.: Pulmonary toxicity study in rats with PM10 and PM2.5: differential responses related to scale and composition. Atmospheric Environment 45, 1034–1041 (2011).
  • 51. Zhang W., Sun Y., Guo J., Zhuang G., Xu D., Wang W., Wu Z.: Sources of aerosol as determined from elemental composition and size distributions in Beijing. Atmospheric Research 95, 197–209 (2010).
  • 52. Zwoździak A., Sówka I., Skrętowicz M., Worobiec A., Nych A., Zwoździak J., Grieken R.: PM10, PM2.5 and PM1.0 Indoor and Outdoor Concentrations and Chemical Composition in School Environment. Ecological Chemistry and Engineering A 18, 933–940 (2011).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-441af30f-a4ae-4811-a463-2174df93e6f5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.