PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Efficient procedure for freeform surface accuracy assessment

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The document provides a procedure for accuracy assessment of freeform surfaces based on CMM sampling limited to critical areas, i.e. areas of distribution of the highest deviations predicted from a theoretical or experimental CAD model of deviations. The value of the form deviation is determined by the point furthest away from the nominal CAD model, i.e. the critical point. Critical areas on the deviation model are determined taking into account the uncertainty of predicting a high of an actual surface profile at a critical point. All steps of the procedure are performed in the CAD environment. The proposed procedure is more efficient than the traditional method of distributing points over the entire surface with the same measurement uncertainty. The procedure is demonstrated by assessing the accuracy of a component after three-axis milling, using a theoretical model of the deviations.
Rocznik
Strony
1--12
Opis fizyczny
Bibliogr. 19 poz., rys., tab.
Twórcy
  • Bialystok University of Technology, Faculty of Mechanical Engineering, ul. Wiejska 45C, 15-351 Białystok, Poland
Bibliografia
  • [1] International Organization for Standardization. (2017). Geometrical Product Specifications (GPS) - Geometrical tolerancing - Tolerances of form, orientation, location and run-out (ISO Standard No. 1101:2017). https://www.iso.org/obp/ui/#iso:std:iso:1101:ed-4:v1:en
  • [2] Sładek, J.A. (2016). Coordinate Metrology. In Springer Tracts in Mechanical Engineering. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-48465-4
  • [3] Shen, Y., Ren, J., Huang, N., Zhang, Y., Zhang, X., & Zhu, L. (2023). Surface form inspection with contact coordinate measurement: a review. International Journal of Extreme Manufacturing, 5(2), 022006. https://doi.org/10.1088/2631-7990/acc76e
  • [4] Ren, J., Ren, M., Sun, L., Zhu, L., & Jiang, X. (2021). Generative Model-Driven Sampling Strategy for the High-Efficiency Measurement of Complex Surfaces on Coordinate Measuring Machines. IEEE Transactions on Instrumentation and Measurement, 70, 1-11. https://doi.org/10.1109/tim.2021.3082322
  • [5] Yi, B., Qiao, F., Huang, N., Wang, X., Wu, S., & Biermann, D. (2021). Adaptive sampling point planning for free-form surface inspection under multi-geometric constraints. Precision Engineering, 72, 95-101. https://doi.org/10.1016/j.precisioneng.2021.04.009
  • [6] Pagani, L., & Scott, P.J. (2018). Curvature based sampling of curves and surfaces. Computer Aided Geometric Design, 59, 32-48. https://doi.org/10.1016/j.cagd.2017.11.004
  • [7] Rajamohan, G., Shunmugam, M., & Samuel, G. (2011). Practical Measurement Strategies for Verification of Freeform Surfaces Using Coordinate Measuring Machines. Metrology and Measurement Systems, 18(2), 209-222. https://doi.org/10.2478/v10178-011-0004-y
  • [8] Sun, J., Xiang, S., Zhou, T., & Cheng, T. (2023). Sampling Point Planning for Complex Surface Inspection based on Feature Points under Area Division. The International Journal of Advanced Manufacturing Technology, 127(1-2), 717-732. https://doi.org/10.1007/s00170-023-11447-5
  • [9] Yu, M., Zhang, Y., Li, Y., & Zhang, D. (2012). Adaptive sampling method for inspection planning on CMM for free-form surfaces. The International Journal of Advanced Manufacturing Technology, 67(9-12), 1967-1975. https://doi.org/10.1007/s00170-012-4623-0
  • [10] Sang, Y., Yan, Y., Yao, C., & He, G. (2021). A new scanning lines distribution strategy for the form error evaluation of freeform surface on CMM. Measurement, 181, 109578. https://doi.org/10.1016/j.measurement.2021.109578
  • [11] He, G., Sang, Y., Pang, K., & Sun, G. (2018). An improved adaptive sampling strategy for freeform surface inspection on CMM. The International Journal of Advanced Manufacturing Technology, 96(1-4), 1521-1535. https://doi.org/10.1007/s00170-018-1612-y
  • [12] Poniatowska, M. (2012). Deviation model based method of planning accuracy inspection of free-form surfaces using CMMs. Measurement, 45(5), 927-937. https://doi.org/10.1016/j.measurement.2012.01.05
  • [13] Wieczorowski, M., Kucharski, D., Sniatala, P., Pawlus, P., Krolczyk, G., & Gapinski, B. (2023). A novel approach to using artificial intelligence in coordinate metrology including nano scale. Measurement, 217, 113051. https://doi.org/10.1016/j.measurement.2023.113051
  • [14] Pawlus, P., Reizer, R., Wieczorowski, M., & Krolczyk, G.M. (2023). Study of surface texture measurement errors. Measurement, 210, 112568. https://doi.org/10.1016/j.measurement.2023.112568
  • [15] Poniatowska, M. (2011). Parameters for CMM Contact Measurements of Free-Form Surfaces. Metrology and Measurement Systems, 18(2), 199-208. https://doi.org/10.2478/v10178-011-0003-z
  • [16] Poniatowska, M. (2018). Optimizing Sampling Parameters of CMM Data Acquisition for Machining Error Correction of Freeform Surfaces. Acta Mechanica et Automatica, 12(4), 265-269. https://doi.org/10.2478/ama-2018-0040
  • [17] Shi, L., & Luo, J. (2024). Sampling point planning method for aero-engine blade profile based on CMM trigger probe. The International Journal of Advanced Manufacturing Technology, 132(1-2), 689-699. https://doi.org/10.1007/s00170-024-13320-5
  • [18] Lim, E.M., & Menq, C.-H. (1995). The prediction of dimensional error for sculptured surface productions using the ball-end milling process. Part 2: Surface generation model and experimental verification. International Journal of Machine Tools and Manufacture, 35(8), 1171-1185. https://doi.org/10.1016/0890-6955(94)00045-l
  • [19] Kim, G.M., Kim, B.H., & Chu, C.N. (2003). Estimation of cutter deflection and form error in ballend milling processes. International Journal of Machine Tools and Manufacture, 43(9), 917-924. https://doi.org/10.1016/s0890-6955(03)00056-7
Uwagi
This work was prepared within the project “Innovative measurement technologies supported by digital data processing algorithms for improved processes and products”, contract number PM/SP/0063/2021/1, financed by the Ministry of Education and Science (Poland) as part of the Polish Metrology Programme.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-441a2938-cdf4-4916-bd35-20b566c5654e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.