PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Detection and forecasting of parkinson disease progression from speech signal features using multilayer perceptron and lSTM

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Accurate diagnosis of P arkinson′sdisease, especially in its early stages, can bea challenging task. The application of machine learning (ML) techniques hashelped improve the diagnostic accuracy of P arkinson′sdisease (PD) detectionbut integration of diagnostic features in ML models for the prediction of disease progression has remained an unexplored research avenue. In this researchwork, Long Short Term Memory (LSTM) was trained using diagnostic features on Parkinson patients speech signals, to predict the disease progression whilea Multilayer Perceptron (MLP) was trained on the same diagnostic features to detect PD. Diagnostic features were selected using two well known features election methods named Relief F and Sequential Forward Selection method. The integration of feature selection methods in LSTM model has resulted in PD progression forecast with an accuracy of 88.7%. Further more, with the application of input diagnostic features on MLP, PD stage was accurately detected with an accuracy of 98.63%, precision of 97.64% and recall of 98.8% showing model robustness and efficiency for its potential application in health care.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Opis fizyczny
Bibliogr. 27 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Software Engineering, Bahria University Karachi Pakistan
autor
  • Department of Software Engineering, Bahria University Karachi Pakistan
autor
  • Department of Software Engineering, Bahria University Karachi Pakistan
autor
  • Department of Software Engineering, Bahria University Karachi Pakistan
Bibliografia
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-44172401-dc12-422b-b148-8787a55c6abd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.