PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Recovery and repurposing of thermal resources in the mining and mineral processing industry

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The consumption of energy contributes significantly to the overall cost of operations and the environmental impact of the mining and mineral processing industry. However, despite a few notable exceptions, most of the resulting waste heat produced is dissipated, without recovery, into the environment. There is also a lot of stored heat in mine water which can be tapped into long after a mine has closed. There is, therefore, significant opportunity to improve the industry's sustainability through increasing the amount of waste heat recovered and repurposed.
Rocznik
Strony
115--125
Opis fizyczny
Bibliogr. 76 poz.
Twórcy
  • School of Engineering, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON, Canada
  • Sudbury Integrated Nickel Operations (a Glencore Company), Sudbury, ON, Canada
  • Sudbury Integrated Nickel Operations (a Glencore Company), Sudbury, ON, Canada
  • School of Engineering, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON, Canada
  • School of Engineering, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON, Canada
Bibliografia
  • [1] Huang F, Zheng J, Baleynaud JM, Lu J. Heat recovery potentials and technologies in industrial zones. Journal of the Energy Institute 2017;90:951-61. https://doi.org/10.1016/j.joei.2016.07.012.
  • [2] Holmberg K, Kivikyto-Reponen P, Harkisaari P, Valtonen K, Erdemir A. Global energy consumption due to friction and wear in the mining industry. Tribology International 2017; 115:116-39. https://doi.org/10.1016/j.triboint.2017.05.010.
  • [3] Luo A, Fang H, Xia J, Lin B, jiang Y. Mapping potentials of low-grade industrial waste heat in Northern China. Res Conser Recycl 2017;125:335-48. https://doi.org/10.1016/j.resconrec.2017.06.018.
  • [4] Natural Resources Canada. National energy use database. URL, http://oee.nrcan.gc.ca/corporate/statistics/neud/dpa/showTable.cfm?typeĽHB&sector Ľaaa&jurisĽca&rnĽ3&pageĽ0. [Accessed 9 April 2019].
  • [5] Miah JH, Griffiths A, McNeill R, Poonaji I, Martin R, Leiser A, Morse S, Yang A, Sadhukhan J. Maximising the recovery of low grade heat: An integrated heat integration framework incorporating heat pump intervention for simple and complex factories. Applied Energy 2015;160:172-84. https://doi.org/10.1016/j.apenergy.2015.09.032.
  • [6] Ross IM. Employing heat pumps to recover low grade industrial thermal resources for space heating and cooling. Sudbury, Canada: Laurentian University; 2016.
  • [7] Kermani M, Wallerand AS, Kantor ID, Maréchal F. Generic superstructure synthesis of organic Rankine cycles for waste heat recovery in industrial processes. Applied Energy 2018; 212:1203-25. https://doi.org/10.1016/j.apenergy.2017.12.094.
  • [8] van de Bor DM, Infante Ferreira CA, Kiss AA. Low grade waste heat recovery using heat pumps and power cycles. Energy 2015;89:864-73. https://doi.org/10.1016/j.energy.2015.06.030.
  • [9] Bluhm S. Improving mine ventilation electricity consumption. URL, https://www.miningreview.com/improving-mineventilation- electricity-consumption/. [Accessed 14 August 2018].
  • [10] Singh R. Quality requirements of iron ore for iron production. In: Singh R, editor. Applied welding engineering. Butterworth- Heinemann; 2016. p. 3-5. https://doi.org/10.1016/B978-0-12-804176-5.00001-3.
  • [11] Norgate T, Haque N. Energy and greenhouse gas impacts of mining and mineral processing operations. J Clean Prod 2010;18:266-74. https://doi.org/10.1016/j.jclepro.2009.09.020.
  • [12] Department of the Environment and Energy. Ways to save - mining. Energy efficiency exchange. URL, https://www.eex. gov.au/opportunities-mining. [Accessed 8 September 2018].
  • [13] Johnson I, Choate B, Dillich S. Waste heat recovery: Opportunities and challenges. TMS annual meeting and exhibition, TMS annual meeting. Minerals, Metals and Materials Society; 2008. p. 47-52.
  • [14] O'Rielly K, Jeswiet J. Improving industrial energy efficiency through the implementation of waste heat recovery systems. Trans Can Soci Mech Eng 2015;39:12.
  • [15] Zhang J, Zhang H-H, He Y-L, Tao W-Q. A comprehensive review on advances and applications of industrial heat pumps based on the practices in China. Applied Energy 2016;178:800-25. https://doi.org/10.1016/j.apenergy.2016.06.049.
  • [16] Bao H, Ma Z, Roskilly AP. Integrated chemisorption cycles for ultra-low grade heat recovery and thermo-electric energy storage and exploitation. Applied Energy 2016;164:228-36. https://doi.org/10.1016/j.apenergy.2015.11.052.
  • [17] Guo J, Huai X, Xu M. Thermodynamic analysis of an isopropanoleacetoneehydrogen chemical heat pump. International Journal of Energy Research 2015;39:140-6. https://doi.org/10.1002/er.3237.
  • [18] Obracaj D, Sas S. Possibilities of using energy recovery in underground mines. EDP Sciences 2018;29. https://doi.org/10.1051/e3sconf/20182900012.
  • [19] Xiong H, Liu H, Li Y, Gao L. Design of air thermal recovery experiment device and analysis of thermal efficiency. In: 9th international symposium on heating, ventilation and air conditioning, ISHVAC joint with the 3rd international conference on building energy and environment, COBEE, procedia engineering. Elsevier Ltd; 2015. p. 1567-73. https://doi.org/10.1016/j.proeng.2015.09.179.
  • [20] Holmlund K. Heat recovery solutions for mine ventilation systems. Karlstad, Sweden: Karlstad University; 2015.
  • [21] Sbarba HD, Fytas K, Paraszczak J. Economics of exhaust air heat recovery systems for mine ventilation. Int J Min Reclam Environ 2012;26:185-98. https://doi.org/10.1080/17480930.2012.710085.
  • [22] Bailey MT, Gandy CJ, Watson IA, Wyatt LM, Jarvis AP. Heat recovery potential of mine water treatment systems in Great Britain. International Journal of Coal Geology 2016;164: 77-84. https://doi.org/10.1016/j.coal.2016.03.007.
  • [23] Hall A, Scott JA, Shang H. Geothermal energy recovery from underground mines. Renewable and Sustainable Energy Reviews 2011;15:916-24. https://doi.org/10.1016/j.rser.2010.11.007.
  • [24] Farr G, Sadasivam S, Manju, Watson, Ian A, Thomas, Hywel R, Tucker D. Low enthalpy heat recovery potential from coal mine discharges in the South Wales Coalfield. International Journal of Coal Geology 2016;164:92-103. https://doi.org/10.1016/j.coal.2016.05.008.
  • [25] Nardin G, Ciotti G, Dal Magro F, Meneghetti A, Simeoni P. Waste heat recovery in the steel industry: Better internal use or external integration?. XXIII summer school industrial systems engineering. URL, https://www.summerschool-aidi.it/section.php?idĽ29; 2018.
  • [26] Keplinger T, Haider M, Steinparzer T, Patrejko A, Trunner P, Haselgrubler M. Dynamic simulation of an electric arc furnace waste heat recovery system for steam production. Applied Thermal Engineering 2018a;135:188-96. https://doi.org/10.1016/j.applthermaleng.2018.02.060.
  • [27] Keplinger T, Haider M, Steinparzer T, Trunner P, Patrejko A, Haselgrubler M. Modeling, simulation, and validation with measurements of a heat recovery hot gas cooling line for electric arc furnaces. Steel Research International 2018b;89. https://doi.org/10.1002/srin.201800009.
  • [28] Loken M. Recovery of waste heat from pyrometallurgical facilites for use in microalgae production. Sudbury, Ontario: Laurentian University; 2013.
  • [29] Lecompte S, Oyewunmi OA, Markides CN, Lazova M, Kaya A, Van Den Broek M, De Paepe M. Case study of an organic Rankine cycle (ORC) for waste heat recovery from an electric arc furnace (EAF). Energies 2017;10. https://doi.org/10.3390/en10050649.
  • [30] Laamanen CA, Shang H, Ross GM, Scott JA. A model for utilizing industrial off-gas to support microalgae cultivation for biodiesel in cold climates. Energy Convers Man 2014;88: 476-83. https://doi.org/10.1016/j.enconman.2014.08.047.
  • [31] Warhurst A, Noronha ML. Environmental policy in mining: Corporate strategy and planning. CRC Press; 1999.
  • [32] Xie D, Pan Y, Flann R, Washington B, Sanetsis S, Donnelley J. Heat recovery from slag through dry granulation. CSRP Conference 2007:29-30.
  • [33] Zhang H, Wang H, Zhu X, Qiu Y-J, Li K, Chen R, Liao Q. A review of waste heat recovery technologies towards molten slag in steel industry. Applied Energy 2013;112: 956-66. https://doi.org/10.1016/j.apenergy.2013.02.019.
  • [34] Rodd L, Koehler T, Voermann N. Economics of slag heat recovery from ferronickel slags, Vol. 15. Canadian Institute of Mining, Metallurgy and Petroleum; 2010.
  • [35] Motz H, Ehrenberg A, Mudersbach D. Dry solidification with heat recovery of ferrous slag. Min Process Extrac Metall 2015; 124:67-75. https://doi.org/10.1179/1743285514Y.0000000082.
  • [36] Institute for Industrial Productivity. Industrial efficiency technology & measures. URL, http://ietd.iipnetwork.org/content/heat-recovery-cooling-water. [Accessed 12 October 2018].
  • [37] Jeswiet J, Szekeres A. Energy consumption in mining comminution. Procedia CIRP 2016;48:140-5. https://doi.org/10.1016/j.procir.2016.03.250.
  • [38] Ninikas K, Hytiris N, Emmanuel R, Aaen B, McMillan S. A renewable heat solution for water ingress in the Glasgow subway tunnel system. In: Presented at the energy and sustainability 2014. Malaysia: Kuala Lumpur; 2014. p. 161-71. https://doi.org/10.2495/ESUS140141.
  • [39] Ogura H. Effects of heat exchange condition on hot air production by a chemical heat pump dryer using CaO/H2O/ Ca(OH)2 reaction. Chem Eng J 2002;86:3-10. https://doi.org/10.1016/S1385-8947(01)00265-0.
  • [40] Wendt DS, Sabharwall P, Utgikar V. Technologies for upgrading light water reactor outlet temperature. In: Volume 1: Heat transfer in energy systems; thermophysical properties; theory and fundamental research in heat transfer. Presented at the ASME 2013 heat transfer summer conference collocated with the ASME 2013 7th international conference on energy sustainability and the ASME 2013 11th international conference on fuel cell science, engineering and technology. Minneapolis, Minnesota, USA: ASME; 2013. https://doi.org/10.1115/HT2013-17122. V001T01A013.
  • [41] Loredo C, Roque~ní N, Ordõnez A. Modelling flow and heat transfer in flooded mines for geothermal energy use: A review. Int J Coal Geology 2016;164:115-22. https://doi.org/10.1016/j.coal.2016.04.013.
  • [42] Stantec. Mine water treatment. URL, https://www.stantec. com/en/services/mine-water-treatment. [Accessed 28 November 2018].
  • [43] SKRC. Mine water as a renewable energy resource. URL, http://skrconline.net/content/images/stories/documents/mine_water_renewable_energy_guide.pdf. [Accessed 28 November 2018].
  • [44] Hiddes L, Stefens J, Verhoeven R, Dix M, Eijdems H. The Netherlands. In: Smart energy regions. The Welsh school of architecture, cardiff, UK; 2014. p. 169-285.
  • [45] MacAskill D, Power C. Researching the geothermal potential of the former springhill mine. Cape Breton: Verschuren Centre for Sustainability in Energy and the Environment; 2015.
  • [46] Jessop A, Macdonald K, J, Spence H. Clean energy from abandoned mines at springhill, Nova Scotia. Energy Sources 1995;17. https://doi.org/10.1080/00908319508946072.
  • [47] Koufos K. Assessing the potential to implement open loop geothermal systems in Canadian underground mines. Montreal: McGill University; 2011.
  • [48] Peralta Ramos E, Breede K, Falcone G. Geothermal heat recovery from abandoned mines: A systematic review of projects implemented worldwide and a methodology for screening new projects. Environ Earth Sci 2015;73:6783-95. https://doi.org/10.1007/s12665-015-4285-y.
  • [49] Banks D, Skarphagen H, Wiltshire R, Jessop C. Heat pumps as a tool for energy recovery from mining wastes. Geological Society - Special Publications 2004;236:499-513.
  • [50] Ghoreishi-Madiseh SA, Kuyuk AF. A techno-economic model for application of geothermal heat pump systems. Energy Procedia. Proceedings of the 9th International Conference on Applied Energy 2017;142:2611-6. https://doi.org/10.1016/j.egypro.2017.12.200.
  • [51] Thompson A. Geothermal development in Canada: Country update. Can Geother Ene Ass 2010;3.
  • [52] Ghomshei M. Geothermal energy from con mine for heating the city of Yellowknife, nwt: A concept study. Vancouver: The University of British Columbia; 2007.
  • [53] Gandt K, Meier T, Echterhof T, Pfeifer H. Heat recovery from EAF off-gas for steam generation: Analytical exergy study of a sample EAF batch. Ironmaking and Steelmaking 2016;43: 581-7. https://doi.org/10.1080/03019233.2016.1155812.
  • [54] Kolagar AH, Meier T, Echterhof T, Pfeifer H. Modeling of the off-gas cooling system for an electric arc furnace and evaluation of the heat recovery potential. Chemie Ingenieur Technik 2016;88:1463-73. https://doi.org/10.1002/cite.201600009.
  • [55] Institute for Industrial Productivity. electric arc furnace. URL, http://ietd.iipnetwork.org/content/electric-arc-furnace. [Accessed 21 September 2018].
  • [56] Bramfoot S, Dixon J, Martin JR, Robertson AD. Design OF waste heat boilers for the recovery OF energy from arc furnace waste gases. Energy conservation in industry - combustion, heat recovery and rankine cycle machines, proceedings of the contractors' meetings., commission of the European communities, (report) EUR. D. . Reidel Publ Co; 1983. p. 131-41.
  • [57] Thekdi A, Nimbalkar S, Keiser J, Storey J. Preliminary results from electric arc furnace off-gas enthalpy modeling. In: Presented at the the iron & steel technology conference and exposition, oak ridge national lab. (ORNL), oak ridge, TN (United States), United States; 2015. p. 15.
  • [58] Slade R, Bauen A. Micro-algae cultivation for biofuels: Cost, energy balance, environmental impacts and future prospects. Biomass and Bioenergy 2013;53:29-38. https://doi.org/10.1016/j.biombioe.2012.12.019.
  • [59] Cherubini F, Bird ND, Cowie A, Jungmeier G, Schlamadinger B, Woess-Gallasch S. Energy - and greenhouse gas-based LCA of biofuel and bioenergy systems: Key issues, ranges and recommendations. Resources, Conservation and Recycling 2009;53:434-47. https://doi.org/10.1016/j.resconrec.2009.03.013.
  • [60] van Esbroeck E. Temperature control of microalgae cultivation under variable conditions. Wageningen, Netherlands: Wageningen University & Research; 2018.
  • [61] Rycroft M. Heat recovery from slag improves energy efficiency of furnaces. Energize 2014;3.
  • [62] Chen C, Habert G, Bouzidi Y, Jullien A, Ventura A. LCA allocation procedure used as an incitative method for waste recycling: An application to mineral additions in concrete. Resources, Conservation and Recycling 2010;54:1231-40. https://doi.org/10.1016/j.resconrec.2010.04.001.
  • [63] Das B, Prakash S, Reddy PSR, Misra VN. An overview of utilization of slag and sludge from steel industries. Resources, Conservation and Recycling 2007;50:40-57. https://doi.org/10.1016/j.resconrec.2006.05.008.
  • [64] Zhu X, Ding B, Wang H, He X-Y, Tan Y, Liao Q. Numerical study on solidification behaviors of a molten slag droplet in the centrifugal granulation and heat recovery system. Applied Thermal Engineering 2018;130:1033-43. https://doi.org/10.1016/j.applthermaleng.2017.11.080.
  • [65] Allen B. Ferrous slag market worth $28 billion in 2020. Smithers Group; 2018. URL, https://www.smitherspira.com/ news/2010/march/global-ferrous-slag-market-growth-to-2020. [Accessed 12 December 2018].
  • [66] Zuo Z, Yu Q, Xie H, Liu S, Liu J, Yang F, Qin Q. Thermodynamic analysis on molten slag waste heat cascade recovery method (MS-WHCR). J Ther Anal Calorim 2018;134:2171-81. https://doi.org/10.1007/s10973-018-7421-6.
  • [67] Duan W, Yu Q, Wang Z, Liu J, Qin Q. Life cycle and economic assessment of multi-stage blast furnace slag waste heat recovery system. Energy 2018;142:486-95. https://doi.org/10.1016/j.energy.2017.10.048.
  • [68] van Laar R, Dupon E, Barel J, Kamerling M. Blast furnace slag granulation plant technology. millennium steel 4. 2014.
  • [69] McDonald IJ, Werner A. Dry slag granulation with heat recovery. In: Anais Dos Seminários de Redução, Minério de Ferro - Aglomeração. Presented at the 45° Redução/16° Minério de Ferro/3° Aglomeração. Rio de Janeiro: Editora Blucher; 2017. p. 286-95. https://doi.org/10.5151/2594-357X-26526.
  • [70] Yu P, Wang S, Li Y, Xu G. A review of granulation process for blast furnace slag. In: Arumugham AJ, Ulkhaq MM, Kocisko M, Goyal RK, Yusmawiza WA, Qiu X, editors. Presented at the the 3rd international conference on industrial engineering and applications; 2016. p. 4. https://doi.org/ 10.1051/matecconf/20166806007.
  • [71] Bisio G. Energy recovery from molten slag and exploitation of the recovered energy. Energy 1997;22:501-9. https://doi.org/10.1016/S0360-5442(96)00149-1.
  • [72] Sun Y, Zhang Z, Liu L, Wang X. Heat recovery from high temperature slags: A review of chemical methods. Energies 2015;8:1917-35. https://doi.org/10.3390/en8031917.
  • [73] Shigaki N, Tobo H, Ozawa S, Ta Y, Hagiwara K. Heat recovery process from packed bed of hot slag plates. ISIJ International 2015;55:2258-65. https://doi.org/10.2355/isijinternational.ISIJINT-2015-169.
  • [74] Duan W, Yu Q, Zuo Z, Qin Q, Li P, Liu J. The technological calculation for synergistic system of BF slag waste heat recovery and carbon resources reduction. Energy Conversion and Management 2014;87:185-90. https://doi.org/10.1016/j.enconman.2014.07.029.
  • [75] Sun Y, Zhang Z, Liu L, Wang X. Multi-stage control of waste heat recovery from high temperature slags based on time temperature transformation curves. Energies 2014;2014: 1673-84. https://doi.org/10.3390/en7031673.
  • [76] Kahraman A, Çelebi A. Investigation of the performance of a heat pump using waste water as a heat source. Energies 2009; 2:697-713. https://doi.org/10.3390/en20300697
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4407bff7-cbd6-42d2-8995-d54bd432640d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.