PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Sustainable production of an iron-eggshell nanocomposite and investigating its catalytic potential for phenol removal

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The research conducted here will hopefully lead to the creation of a practical, inexpensive method for purging aqueous solutions of contaminating phenolic chemicals. A biosorbent system comprised of eggshells and iron was studied for its potential to effectively detoxify phenol. Both the eggshell and the iron systems were used in the preparation of the adsorbents in order to achieve the desired result of having the properties of both systems. Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD) were used for characterisation. Batch tests were conducted to evaluate the adsorption capacity of eggshells and iron under the influence of different operating parameters (shaking speed, pH, initial phenol content, and contact time). In the design-expert modelling, the optimisation conditions were found to be a pollutant concentration = 30.0 mg . L–1, pH of 3.00, adsorbent dose = 0.11 mg . L–1, shaking speed = 150 rpm, and time = 120 min for an phenol reduction rate of 94.4 % which it was extremely near to the experimentally value (96.6 %). The CCD modelling that was performed in the RSM verified the findings that were predicted. On the basis of laboratory results, the prediction proved accurate.
Rocznik
Strony
387--403
Opis fizyczny
Bibliogr. 56 poz., rys., tab., wykr.
Twórcy
  • Department of Environmental Engineering, College of Engineering, University of Baghdad, 10071 Baghdad, Iraq
  • Department of Mining Engineering, College of Petroleum and Mining Engineering, University of Mosul, 41001 Mosul, Iraq
  • Department of Environmental Technologies, College of Environmental Science and Technologies, University of Mosul, 41001 Mosul, Iraq
Bibliografia
  • [1] Hashem T, Ibrahim AH, Wöll C, Alkordi MH. Grafting zirconium-based metal-organic framework UiO-66-NH2 nanoparticles on cellulose fibers for the removal of Cr(VI) ions and methyl orange from water. ACS Appl Nano Materials. 2019;2:5804-8. DOI: 10.1021/acsanm.9b01263.
  • [2] Luan M, Jing G, Piao Y, Liu D, Jin L. Treatment of refractory organic pollutants in industrial wastewater by wet air oxidation. Arabian J Chem. 2017;10:S769-S76. DOI: 10.1016/j.arabjc.2012.12.003.
  • [3] Borhade A, Kale A. Calcined eggshell as a cost effective material for removal of dyes from aqueous solution. Appl Water Sci. 2017;7:4255-68. DOI: 10.1007/s13201-017-0558-9.
  • [4] Oulego P, Laca A, Calvo S, Díaz M. Eggshell-supported catalysts for the advanced oxidation treatment of humic acid polluted wastewaters. Water. 2019;12:100. DOI: 10.3390/w12010100.
  • [5] Mohamed A, Yousef S, Nasser WS, Osman T, Knebel A, Sánchez EPV, et al. Rapid photocatalytic degradation of phenol from water using composite nanofibers under UV. Environ Sci Europe. 2020;32:1-8. DOI: 10.1186/s12302-020-00436-0.
  • [6] Malato S, Fernández-Ibáñez P, Maldonado MI, Blanco J, Gernjak W. Decontamination and disinfection of water by solar photocatalysis: recent overview and trends. Catalysis Today. 2009;147:1-59. DOI: 10.1016/j.cattod.2009.06.018.
  • [7] Aboamera NM, Mohamed A, Salama A, Osman T, Khattab A. Characterization and mechanical properties of electrospun cellulose acetate/graphene oxide composite nanofibers. Mechanics Adv Materials Structures. 2019;26:765-9. DOI: 10.1080/15376494.2017.1410914.
  • [8] Damjanović L, Rakić V, Rac V, Stošić D, Auroux A. The investigation of phenol removal from aqueous solutions by zeolites as solid adsorbents. J Hazard Materials. 2010;184:477-84. DOI: 10.1016/j.jhazmat.2010.08.059.
  • [9] Mohammadi S, Kargari A, Sanaeepur H, Abbassian K, Najafi A, Mofarrah E. Phenol removal from industrial wastewaters: a short review. Desalin Water Treatment. 2015;53:2215-34. DOI: 10.1080/19443994.2014.883327.
  • [10] Hussain A, Dubey SK, Kumar V. Kinetic study for aerobic treatment of phenolic wastewater. Water Resources Industry. 2015;11:81-90. DOI: 10.1016/j.wri.2015.05.002.
  • [11] Rana AG, Minceva M. Analysis of photocatalytic degradation of phenol with exfoliated graphitic carbon nitride and light-emitting diodes using response surface methodology. Catalysts. 2021;11:898. DOI: 10.3390/catal11080898.
  • [12] Choquette-Labbé M, Shewa WA, Lalman JA, Shanmugam SR. Photocatalytic degradation of phenol and phenol derivatives using a nano-TiO2 catalyst: Integrating quantitative and qualitative factors using response surface methodology. Water. 2014;6:1785-806. DOI: 10.3390/w6061785.
  • [13] Ramírez EEP, de la Luz Asunción M, Rivalcoba VS, Hernández ALM, Santos CV. Removal of Phenolic Compounds from Water by Adsorption and Photocatalysis. Intech Open; 2017. DOI: 10.5772/66895.
  • [14] Aslam Z, Qaiser M, Ali R, Abbas A, Zarin S. Al2O3/MnO2/CNTs nanocomposite: Synthesis, characterization and phenol adsorption. Fullerenes Nanotubes Carbon Nanostructures. 2019. DOI: 10.1080/1536383x.2019.1622528.
  • [15] Jaber WS, Alwared AI. Removal of oil emulsion from aqueous solution by using Ricinus communis leaves as adsorbent. SN Appl Sci. 2019;1:1-12. DOI: 10.1007/s42452-019-0970-x.
  • [16] Alwared AI, Al-Musawi TJ, Muhaisn LF, Mohammed AA. The biosorption of reactive red dye onto orange peel waste: a study on the isotherm and kinetic processes and sensitivity analysis using the artificial neural network approach. Environ Sci Pollut Res. 2021;28:2848-59. DOI: 10.1007/s11356-020-10613-6.
  • [17] Girish C, Ramachandra Murty V. Adsorption of phenol from aqueous solution using Lantana camara, forest waste: kinetics, isotherm, and thermodynamic studies. Int Scholarly Res Notices. 2014;2014. DOI: 10.1155/2014/201626.
  • [18] Issabayeva G, Hang SY, Wong MC, Aroua MK. A review on the adsorption of phenols from wastewater onto diverse groups of adsorbents. Rev Chem Eng. 2018;34:855-73. DOI: 10.1515/revce-2017-0007.
  • [19] Fathali Z, Rezaei S, Faramarzi MA, Habibi-Rezaei M. Catalytic phenol removal using entrapped crosslinked laccase aggregates. Int J Biol Macromol. 2019;122:359-66. DOI: 10.1016/j.ijbiomac.2018.10.147.
  • [20] Ok YS, Lee SS, Jeon W-T, Oh S-E, Usman AR, Moon DH. Application of eggshell waste for the immobilization of cadmium and lead in a contaminated soil. Environ Geochem Health. 2011;33:31-9. DOI: 10.1007/s10653-010-9362-2 .
  • [21] Kakavandi B, Jahangiri-Rad M, Rafiee M, Esfahani AR, Babaei AA. Development of response surface methodology for optimization of phenol and p-chlorophenol adsorption on magnetic recoverable carbon. Microporous Mesoporous Materials. 2016;231:192-206. DOI: 10.1016/j.micromeso.2016.05.033.
  • [22] Almessiere MA, Slimani Y, Güngüneş H, Ali S, Manikandan A, Ercan I, et al. Magnetic attributes of NiFe2O4 nanoparticles: influence of dysprosium ions (Dy3+) substitution. Nanomaterials. 2019;9:820. DOI: 10.3390/nano9060820.
  • [23] Mhemid RKS, Saeed LI, Shihab MS. Decontamination of metronidazole antibiotic - A novel nanocomposite-based strategy. J Ecol Eng. 2023;24:246-59. DOI: 10.12911/22998993/168500.
  • [24] Mhemid RKS, Salman MS, Mohammed NA. Comparing the efficiency of N-doped TiO2 and commercial TiO2 as photo catalysts for amoxicillin and ciprofloxacin photo-degradation under solar irradiation. J Environ Sci Health, Part A. 2022;57:813-29. DOI: 10.1080/10934529.2022.2117960.
  • [25] Thilakan D, Patankar J, Khadtare S, Wagh NS, Lakkakula J, El-Hady KM, et al. Plant-derived iron nanoparticles for removal of heavy metals. Int J Chem Eng. 2022;2022. DOI: 10.1155/2022/1517849.
  • [26] Awwad AM, Salem NM, Aqarbeh MM, Abdulaziz FM. Green synthesis, characterization of silver sulfide nanoparticles and antibacterial activity evaluation. Chem Int. 2020;6:42-8. DOI: 10.5281/zenodo.3243157.
  • [27] Awwad AM, Amer MW, Salem NM, Abdeen AO. Green synthesis of zinc oxide nanoparticles (ZnO-NPs) using Ailanthus altissima fruit extracts and antibacterial activity. Chem Int. 2020;6:151-9. DOI: 10.5281/zenodo.3559520.
  • [28] Mekonnen A, Degu Y, Carlson R. Appraisal of solvent system effect on bioactivity profiling of Cordia africana stem bark extracts. Chem Int. 2020;6:1-10. DOI: 10.5281/zenodo.2574105.
  • [29] Noreen S, Ismail S, Ibrahim SM, Kusuma HS, Nazir A, Yaseen M, et al. ZnO, CuO and Fe2O3 green synthesis for the adsorptive removal of direct golden yellow dye adsorption: kinetics, equilibrium and thermodynamics studies. Zeit Physikalische Chemie. 2021;235:1055-75. DOI: 10.1515/zpch-2019-1599.
  • [30] Ge M, Wang X, Du M, Liang G, Hu G, SM JA. Adsorption analyses of phenol from aqueous solutions using magadiite modified with organo-functional groups: Kinetic and equilibrium studies. Materials. 2018;12:96. DOI: 10.3390/ma12010096.
  • [31] Sulaiman FA, Alwared AI. Ability of response surface methodology to optimize photocatalytic degradation of amoxicillin from aqueous solutions using immobilized TiO2/sand. J Ecol Eng. 2022;23. DOI: 10.12911/22998993/147318.
  • [32] Khoshnamvand N, Kord Mostafapour F, Mohammadi A, Faraji M. Response surface methodology (RSM) modeling to improve removal of ciprofloxacin from aqueous solutions in photocatalytic process using copper oxide nanoparticles (CuO/UV). AMB Express. 2018;8:1-9. DOI: 10.1186/s13568-018-0579-2.
  • [33] Oguaghamba O, Onyia M. Modified and generalized full cubic polynomial response surface methodology in engineering mixture design. Nigerian J Technol. 2019;38:52-9. DOI: 10.4314/njt.v38i1.8.
  • [34] Sarabia LA, Ortiz MC, Sánchez MS. Response Surface Methodology. 2020;287-326. DOI: 10.1016/B978-044452701-1.00083-1.
  • [35] Helmiyati H, Masriah I. Preparation of cellulose/CaO-Fe2O3 nanocomposites as catalyst for fatty acid methyl ester production. AIP Conf Proc: AIP Publishing LLC. 2019. p. 020062. DOI: 10.1063/1.5132489.
  • [36] Lee S, Lee T, Kim D. Adsorption of hydrogen sulfide from gas streams using the amorphous composite of α-FeOOH and activated carbon powder. Ind Eng Chem Res. 2017;56:3116-22. DOI: 10.1021/acs.iecr.6b04747.
  • [37] Torit J, Phihusut D. Phosphorus removal from wastewater using eggshell ash. Environ Sci Pollut Res. 2019;26:34101-9. DOI: 10.1007/s11356-018-3305-3.
  • [38] Bwatanglang IB, Magili ST, Kaigamma I. Adsorption of phenol over bio-based silica/calcium carbonate (CS-SiO2/CaCO3) nanocomposite synthesized from waste eggshells and rice husks. Peer J Phys Chem. 2021;3:e17. DOI: 10.7717/peerj-pchem.17.
  • [39] Basaleh AA, Al-Malack MH, Saleh TA. Metal removal using chemically modified eggshells: preparation, characterization, and statistical analysis. Desalin Water Treat. 2019;173:313-30. DOI: 10.5004/dwt.2020.24690.
  • [40] Ihli J, Wong WC, Noel EH, Kim Y-Y, Kulak AN, Christenson HK, et al. Dehydration and crystallization of amorphous calcium carbonate in solution and in air. Nature Commun. 2014;5:1-10. DOI: 10.1038/ncomms4169.
  • [41] Hajji S, Mzoughi N. Kinetic, equilibrium and thermodynamic studies for the removal of lead ions from aqueous solutions by using low cost adsorbents: A comparative study. IOSR J Appl Chem. 2018;11:12-24. DOI: 10.9790/5736-1107011224.
  • [42] Krumins J, Klavins M, Seglins V, Kaup E. Comparative study of peat composition by using FT-IR spectroscopy. Rigas Tehniskas Universitates Zinatniskie Raksti. 2012;26:106.
  • [43] Habte L, Shiferaw N, Mulatu D, Thenepalli T, Chilakala R, Ahn JW. Synthesis of nano-calcium oxide from waste eggshell by sol-gel method. Sustainability. 2019;11:3196. DOI: 10.3390/su11113196.
  • [44] Du H, Amstad E. Water: How does it influence the CaCO3 formation? Angew Chemie Int Ed. 2020;59:1798-816. DOI: 10.1002/anie.201903662.
  • [45] Sorokhaibam LG, Ahmaruzzaman M. Phenolic Wastewater Treatment: Development and Applications of New Adsorbent Materials. Butterworth-Heinemann: Oxford, England; 2014. ISBN: 9780444634030.
  • [46] Chaker H, Ameur N, Saidi-Bendahou K, Djennas M, Fourmentin S. Modeling and Box-Behnken design optimization of photocatalytic parameters for efficient removal of dye by lanthanum-doped mesoporous TiO2. J Environ Chem Eng. 2021;9:104584. DOI: 10.1016/j.jece.2020.104584.
  • [47] Tetteh EK, Obotey Ezugbe E, Rathilal S, Asante-Sackey D. Removal of COD and SO42− from oil refinery wastewater using a photo-catalytic system - comparing TiO2 and zeolite efficiencies. Water. 2020;12:214. DOI: 10.3390/w12010214.
  • [48] Dehghan A, Zarei A, Jaafari J, Shams M, Khaneghah AM. Tetracycline removal from aqueous solutions using zeolitic imidazolate frameworks with different morphologies: a mathematical modeling. Chemosphere. 2019;217:250-60. DOI: 10.1016/j.chemosphere.2018.10.166.
  • [49] De la Luz-Asunción M, Sánchez-Mendieta V, Martínez-Hernández A, Castaño V, Velasco-Santos C. Adsorption of phenol from aqueous solutions by carbon nanomaterials of one and two dimensions: Kinetic and equilibrium studies. J Nanomaterials. 2015;2015. DOI: 10.1155/2015/405036.
  • [50] Khare P, Kumar A. Removal of phenol from aqueous solution using carbonized Terminalia chebula-activated carbon: process parametric optimization using conventional method and Taguchi’s experimental design, adsorption kinetic, equilibrium and thermodynamic study. Appl Water Sci. 2012;2:317-26. DOI: 10.1007/s13201-012-0047-0.
  • [51] Gundogdu A, Duran C, Senturk HB, Soylak M, Ozdes D, Serencam H, et al. Adsorption of phenol from aqueous solution on a low-cost activated carbon produced from tea industry waste: equilibrium, kinetic, and thermodynamic study. J Chem Eng Data. 2012;57:2733-43. DOI: 10.1021/je300597u.
  • [52] Lim AP, Aris AZ. A review on economically adsorbents on heavy metals removal in water and wastewater. Rev Environ Sci Bio/Technol. 2014;13:163-81. DOI: 10.1007/s11157-013-9330-2.
  • [53] Hairuddin MN, Mubarak NM, Khalid M, Abdullah EC, Walvekar R, Karri RR. Magnetic palm kernel biochar potential route for phenol removal from wastewater. Environ Sci Pollut Res. 2019;26:35183-97. DOI: 10.1007/s11356-019-06524-w.
  • [54] Djebbar M, Djafri F, Bouchekara M, Djafri A. Adsorption of phenol on natural clay. Appl Water Sci. 2012;2:77-86. DOI: 10.1007/s13201-012-0031-8.
  • [55] Khoshtinat F, Tabatabaie T, Ramavandi B, Hashemi S. Application of pier waste sludge for catalytic activation of proxy-monosulfate and phenol elimination from a petrochemical wastewater. Environ Sci Pollut Research. 2022;46:69462-71. DOI: 10.1007/s11356-022-20690-4.
  • [56] Bousba S, Meniai AH. Removal of phenol from water by adsorption onto sewage sludge based adsorbent. Chem Eng Trans. 2014;40:235-40. DOI: 10.3303/CET1440040.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-440454a2-9708-4b39-8e4f-f0f7f708aa3c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.