PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Geochemistry and growth morphology of alkali feldspar crystals from an IAB iron meteorite : insight into possible hypotheses of their crystallization

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Alkali feldspar crystals have been recognized in the troilite-graphite nodules of the Morasko IAB iron meteorite. Their chemical, microtextural and structural properties were studied using electron microprobe analysis (EMPA), laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), transmission electron microscopy (TEM) and Raman spectroscopy. The feldspars occur as perthitic or antiperthitic intergrowths, whereas the albite lamellae are perfectly twinned. The structural properties reveal intergrown phases with fairly disordered patterns. The electron microprobe analyses demonstrate that the intergrown phases are mainly rich in sodium or potassium, resulting in compositions that are close to those of albite or orthoclase. The compositions, calculated on the basis of a segmented perthite-antiperthite image, showed that the Or-to-Ab proportions in the homogenized crystals were almost 0.3:0.7, thus indicating that the anorthoclase crystallized under high-temperature conditions. Two hypotheses of crystal formation could account for these characteristics: crystallization from a melt or from a metasomatic solution. Relics with evidence of metasomatic replacement of former minerals were not found. Accordingly, this work focuses on arguments that support the other hypothesis. Large ion lithophile elements (LILEs, e.g., Ba, Sr, Rb, LREE, Pb, and Ga) were used to track the origin of the crystals. Their concentrations indicate crystallization from a parent melt strongly depleted in LILEs. Alkali feldspar is commonly a product of a highly differentiated melt. However, highly differentiated melts are typically enriched in LILEs, which here is not the case. The melt that crystallized the feldspar cannot be related to impact-induced partial melting of the chondritic material alone. The derived melt probably was contaminated by silica-rich target material during interaction between the IAB projectile and the target material and was accompanied by metal and sulphide melts that were both immiscible with a silicate melt.
Rocznik
Strony
121--140
Opis fizyczny
Bibliogr. 79 poz., rys., tab., wykr.
Twórcy
autor
  • Institute of Geological Sciences, Polish Academy of Sciences, Research Centre in Warsaw, Twarda 51/55, 00-818 Warszawa, Poland
  • Faculty of Earth Sciences, University of Silesia, Będzińska 60, 41-200 Sosnowiec, Poland
autor
  • Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
  • Jagiellonian Centrefor Experimental Therapeutics (JCET), Jagiellonian University, Bobrzyńskiego 14,30-348 Kraków, Poland
autor
  • Helmholtz-Zentrum Potsdam Deutsches GeoForschungs Zentrum GFZ, Telegrafenberg, 14473 Potsdam, Germany GHZ
  • Institute of Geology, Adam Mickiewicz University, Maków Polnych 16, 61-606 Poznań ,Poland
autor
  • Institute of Geological Sciences, Polish Academy of Sciences, Research Centre in Warsaw, Twarda 51/55, 00-818 Warszawa, Poland
autor
  • Department of Geochemistry, GZG of Georg-August-University, Goldschmidtstrasse 1, 37077 Göettingen, Germany
autor
  • Institute of Hydrogeology and Engineering Geology, University of Warsaw, 02-089 Warszawa, ¯wirki i Wigury 93, Poland
  • Institute of Geological Sciences, Polish Academy of Sciences, Research Centre in Warsaw, Twarda 51/55, 00-818 Warszawa, Poland
autor
  • Institute of Geological Sciences, Polish Academy of Sciences, Research Centre in Warsaw, Twarda 51/55, 00-818 Warszawa, Poland
Bibliografia
  • 1. Benedix, G. K., Lauretta, D. S. & McCoy, T. J., 2005. Thermodynamic constrains for formation conditions of winonaites and silicate-bearing IAB irons. Geochimica et Cosmochimica Acta, 69: 5123-5131.
  • 2. Benedix, G. K., McCoy, T. J., Keil, K. & Love, S. G., 2000. A petrologic study of the IAB iron meteorites: constraints on the formation of the IAB-Winonaite parent body. Meteoritics & Planetary Science, 35: 1127-1141.
  • 3. Brown, W. L. & Parsons, I., 1988. Zoned ternary feldspars in the Klokken intrusion: Exsolution textures and mechanisms. Contributions to Mineralogy and Petrology, 98: 444-454.
  • 4. Buerger, M. J. 1945. The genesis of twin crystals. American Mineralogist, 30: 469-482.
  • 5. Bunch, T. E. & Olsen, E., 1968. Potassium Feldspar in Weekeroo Station, Kodaikanal, and Colomera Iron Meteorites. Science, 160: 1223-1225.
  • 6. De Campos, C. P., Perugini, D., Ertel-Ingrisch, W., Dingwell, D. B. & Poli, G., 2011. Enhancement of magma mixing efficiency by chaotic dynamics: an experimental study. Contribution to Mineralogy and Petrology, 161: 863-881.
  • 7. Choi, B.-G., Ouyang, X. & Wasson, J. T., 1995. Classification and origin of the IAB and IIICD iron meteorites. Geochimica et Cosmochimica Acta, 59: 593-612.
  • 8. Cuesta, A., Dhamelincourt, P., Laureyns J., Martinez-Alonso, A. & Tascon, J. M. D., 1994. Raman microprobe studies on carbon materials, Carbon, 32:1523-1532.
  • 9. Deer, W. A., Howie, R. A. & Zussman, J., 2001. Rock-forming Minerals, vol. 4A. Framework Silicates, Feldspars. The Geological Society, London, 972 pp.
  • 10. Dominik, B. 1976. Mineralogical and chemical study of coarse octahedrite Morasko. Prace Mineralogiczne PAN, 47: 7-53.
  • 11. Donnelly, T. W., 1967. Kinetic considerations in the genesis of growth twinning. American Mineralogist, 52: 1-12.
  • 12. Dziel, T., Gałązka-Friedman, J. & Karwowski, Ł., 2007. Mossbauer investigations on Marlow and Morasko meteorite. IIIrd Meteorite Seminar 21-22.04.2005, Olsztyn. Olsztyńskie Planetarium i Obserwatorium Astronomiczne, Polskie Towarzystwo Meteorytowe, pp. 17-23. [In Polish, with English abstract.]
  • 13. Ebert, M., Hecht, L., Deutsch, A. & Kenkmann, T., 2013. Chemical modification of projectile residues and target material in a MEMIN cratering experiment. Meteoritics & Planetary Science, 48: 134-149.
  • 14. Ebert, M., Hecht, L., Deutsch, A., Kenkmann, T., Wirth, R. & Berndt, J., 2014. Geochemical processes between steel projectiles and silica-rich targets in hypervelocity impact experiments. Geochimica et Cosmochimica Acta, 133: 257-279.
  • 15. Escribano, R., Sloan, J. J., Siddique, N., Sze, N. & Dudev, T., 2001. Raman spectroscopy of carbon-containing particles. Vibrational Spectroscopy, 26: 179-186.
  • 16. Ferrari, A. C. & Robertson, J., 2000. Interpretation of Raman spectra of disordered and amorphous carbon. Physical Review B, 61:14095-14107.
  • 17. Ferrari, A. C. & Robertson, J., 2001. Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon. Physical Review B, 64: 075414-1-13.
  • 18. Freeman, J. J., Wang, A., Kuebler, K. E., Jolliff, B. L. & Haskin, L., A., 2008. Characterization of natural feldspars by Raman spectroscopy for future planetary exploration. Canadian Mineralogist, 46: 1477-1500.
  • 19. Gallegos, J. & Jones, R. H., 2011. Equilibration of feldspar in petrologic type 4-6 L and LL chondrites: metamorphic conditions on chondrite parent bodies. 74th Annual Meeting of the Meteoritical Society, Abstracts, University of Greenwich, London, UK, August 8-12, 2011. The Meteoritical Society, London, p. 5433, A72.
  • 20. Garde, A. A. & Keulen, N., 2013. Impact melting and mechanical mixing of K-feldspar and plagioclase liquids: Maniitsoq structure, West Greenland. 76th Annual Meteoritical Society Meeting, Abstracts, Edmonton, Canada, July 29 - August 2, 2013. The Meteoritical Society, Edmonton, p. 5005.
  • 21. Ghose, S., Choudhury, N., Chaplot, S. L., Pal Chowdhury, C. & Sharma, S. K., 1994. Lattice dynamics and Raman spectroscopy of protoenstatite Mg2Si2O6. Physics of Chemistry and Minerals, 20: 469-477.
  • 22. Goldsmith, J. R. & Newton, R. C., 1974. An experimental determination of the alkali feldspar solvus. In: MacKenzie, W. S. & Zussman, J. (eds), The Feldspars. Manchester University Press, Manchester, pp. 337-359.
  • 23. Goldstein, J. I., Scott, E. R. D. & Chabot, N. L., 2009. Iron meteorites: Crystallization, thermal history parent bodies, and origin. Chemie der Erde (Geochemistry), 69: 293-325.
  • 24. Hamann, C., Hecht, L., Ebert, M. & Wirth, R., 2013. Chemical projectile-target interaction and liquid immiscibility in impact glass from the Wabar craters, Saudi Arabia. Geochimica et Cosmochimica Acta, 121: 291-310.
  • 25. Horz, F. Cintala, M. J., See, T. H. & Le, L., 2005. Shock melting of ordinary chondrite powders and implications for asteroidal regoliths. Meteoritics and Planetary Science, 40: 1329-1346.
  • 26. Jones, R. H. & Brearley, A. J., 2011. Exsolution in feldspar in the Tuxtuac (LL5) Chondrite: a new perspective on cooling rates for metamorphosed chondrites. 74th Annual Meeting of the Meteoritical Society, Abstracts, University of Greenwich, London, UK, August 8-12, 2011. The Meteoritical Society, London, p. 5475, A115.
  • 27. Karwowski, Ł. & Gurdziel, A., 2009. Secondary minerals in Morasko and Pułtusk meteorites. Visnyk Lviv University, Series Physics, 43: 243-248.
  • 28. Karwowski, Ł., Helios, K., Kryza, R., Muszyński, A. & Drożdżewski, P., 2013. Raman spectra of selected mineral phases of the Morasko iron meteorite. Journal of Raman Spectroscopy, 44: 1181-1186.
  • 29. Karwowski, Ł., Kryza, R., Muszyński, A. & Pilski, A. S., 2012. Outline mineralogy of the Morasko meteorite. In: Muszyński, A., Kryza, R., Karwowski, Ł., Pilski, A. S. & Muszyńska, J. (eds), Morasko. The Largest Iron Meteorite Shower in Central Europe. Bogucki Wydawnictwo Naukowe, Poznań, pp. 43-52.
  • 30. Karwowski, Ł., Kusz, J., Muszyński, A., Kryza, R., Sitarz, M. & Galuskin, E. V., 2015. Moraskoite, Na2Mg(PO4)F, a new mineral from the Morasko IAB-MG iron meteorite (Poland). Mineralogical Magazine, 79: 387-398.
  • 31. Karwowski, Ł. & Muszyński, A., 2006. Silicates Association in nodules of iron meteorites Seeläsgen, Morasko and Jankowo Dolne. Mineralogia – Special Papers, 29: 140-143.
  • 32. Karwowski, Ł. & Muszyński, A., 2008. Multimineral inclusions in the Morasko coarse octahedrite. Meteoritics & Planetary Science, 43, 7, A71-A71.
  • 33. Karwowski, Ł., Muszyński, A., Kryza, R. & Helios, K., 2009. Phosphates in the Morasko meteorite. Mineralogia - Special Papers, 35: 90-91.
  • 34. Kovach, H. A. & Jones, R. H., 2010. Feldspar in type 4-6 ordinary chondrites: Metamorphic processing on the H and LL chondrite parent bodies. Meteoritics & Planetary Science, 45: 246-264.
  • 35. Kracher, A., 1985. The evolution of the partially differentiated planetesimals: Evidence from the iron meteorite groups IAB and IIICD. Journal of Geophysical Research, 90 (Suppl.): C689-C698.
  • 36. Lewis, J. A. & Jones, R. H., 2015. Microtextural study of feldspar in petrologic type 4 ordinary chondrites: contrasting records of parent body metasomatism. 78th Annual Meeting of the Meteoritical Society, Abstracts, University of California, Berkeley, July 27-31, 2015. The Meteoritical Society, Berkeley, p. 5119.
  • 37. Lewis, J. A. & Jones, R. H., 2016. Feldspar in the l4 chondrite Saratov: the history and timing of metasomatism. 79th Annual Meeting of the Meteoritical Society, Abstracts, Berlin, Germany, 7-12 August 2016. The Meteoritical Society, Berlin, p. 6121.
  • 38. Lewis, J. A., Jones, R. H. & Brearley, A. J., 2016. Alkali feldspar exsolution in ordinary chondrites: alkali metasomatism, metamorhpism, and cooling rates. 47th Lunar and Planetary Science Conference, Abstracts, The Woodlands, Texas, March 21-25, 2016. Lunar and Planetary Institute, National Aeronautics and Space Administration, Woodlands, p. 2559.
  • 39. MacQueen, J., 1967. Some methods for classification and analysis of multivariate observations. In: LeCam, L.M. & Neymann, J. (eds), Proceedings of Fifth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1 - Statistics. University of California Press, Berkeley, California, pp. 281297.
  • 40. Matthews, M. J., Pimenta, M. A., Dresselhaus, G., Dresselhaus, M. S. & Endo, M., 1999. Origin of dispersive effects of the Raman D band in carbon materials. Physical Review B, 59: R6585.
  • 41. McCoy, T. J., Keil, K., Scott, E. R. D. & Haack, H., 1993. Genesis of the IIICD iron meteorites: Evidence from silicate-bearing inclusions. Meteoritics, 28: 552-560.
  • 42. McDowell, S. D., 1986. Composition and structural state of coexisting feldspars, Salton Sea geothermal field. Mineralogical Magazine, 50: 75-84.
  • 43. McKenzie, D. & O’Nions, R. K., 1991. Partial melt distributions from inversion of rare earth element concentrations. Journal of Petrology, 32: 1021-1091.
  • 44. McKeown, D. A., 2005. Raman spectroscopy and vibrational analyses of albite: From 25 C through the melting temperature. American Mineralogist, 90: 1506-1517.
  • 45. Mittlefehldt, D. W., Lindstrom, M. M., Bogard, D. D., Garrison, D. H. & Field, S. W., 1996. Acapulco- and Lodran-like achondrites: Petrology, geochemistry, chronology, and origin. Geochimica et Cosmochimica Acta, 60: 867-882.
  • 46. Mittlefehldt, D. W., McCoy, T. J., Goodrich, C. A. & Kracher, A., 1998. Non-chondritic meteorites from asteroidal bodies. In: Papike, J. J. (ed.), Planetary Materials, Reviews in Mineralogy, 36, pp. 4.1-4.195.
  • 47. Muszyński, A., Kryza, R., Karwowski, Ł., Pilski, A. S. & Muszyńska, J. (eds), 2012. Morasko. Największy deszcz meteorytów żelaznych w Europie środkowej [Morasko. The largest iron meteorite shower in Central Europe]. Studia i Prace z Geografii i Geologii, 28. Bogucki Wydawnictwo Naukowe, Poznań, 111 pp. [In Polish and English.]
  • 48. Muszyński, A., Stankowski, W., Dzierżanowski, P. & Karwowski, Ł., 2001. New data about the Morasko meteorite. Mineralogical Society of Poland - Special Papers 18: 134-137.
  • 49. Parsons, I., 1978. Alkali feldspars: which solvus? Physics and Chemistry of Minerals, 2: 199-213.
  • 50. Parsons, I. & Lee, M. R., 2009. Mutual replacement reactions in alkali feldspars I: Microtextures and mechanisms. Contributions to Mineralogy and Petrology, 157: 641-661.
  • 51. Parsons, I., Magee, C., Allen, C., Shelley, M. J. & Lee, M. R., 2009. Mutual replacement reactions in alkali feldspars II: Trace element partitioning and geothermometry. Contributions to Mineralogy and Petrology, 157: 663-687.
  • 52. Parsons, I., Fitz Gerald, J. D. & Lee, M. R., 2015. Routine characterization and interpretation of complex alkali feldspar intergrowths. American Mineralogist, 100: 1277-1303
  • 53. Peccerillo, A., Barberio, M. R., Yirgu, G., Ayalew, D., Barbieri, M. & Wu, T. W., 2003. Relationships between mafic and peralkaline silicic magmatism in continental rift settings: a petrological, geochemical and isotopic study of the Gedemsa volcano, Central Ethiopian Rift. Journal of Petrology, 44: 2002-2032.
  • 54. Peccerillo, A., De Astis, G., Faraone, D., Forni, F. & Frezzotti, M. L., 2013. Compositional variations of magmas in the Aeolian arc: implications for petrogenesis and geodynamics. Geological Society London, Memoirs, 37: 491-510.
  • 55. Perugini, D., Petrelli, M. & Poli, G., 2006. Diffusive fractionation of trace elements by chaotic mixing of magmas. Earth Planetary Science Letters, 243: 669-680.
  • 56. Perugini, D. & Poli, G., 2012. The mixing of magmas in plutonic and volcani environments: analogies and differences. Lithos, 153: 261-277.
  • 57. Pilski, A. S., Wasson, J. T., Muszyński, A., Kryza, R. & Karwowski, Ł., 2013. Low-Ir IAB-irons from Morasko and other locations in central Europe: one fall, possibly distinct from IAB-MG. Meteoritics and Planetary Science, 41: 1-11.
  • 58. Pryer, L. L. & Robin, P.-Y. F., 1995. Retrograde metamorphic reactions in deforming granites and the origin of flame perthite. Journal of Metamorphic Geology, 14: 645-658.
  • 59. Pryer, L. L. & Robin, P.-Y. F., 1996. Differential stress control on the growth and orientation of flame perthite: a palaeostress-direction indicator. Journal of Structural Geology, 18: 1151-1166.
  • 60. Rapp, R. P. & Watson, E. B., 1995. Dehydratation melting of metabasalt at 8-32 kbar: implications for continental growth and crust-mantle recycling. Journal of Petrology, 36: 891-931.
  • 61. Ruzicka, A., Fowler, G. W., Snyder, G. A., Prinz, M., Papike, J. J. & Taylor, L. A., 1999. Petrogenesis of silicate inclusions in the Weekeroo Station IIE iron meteorite: Differentiation, remelting, and dynamic mixing. Geochimica et Cosmochimica Acta, 63: 2123-2143.
  • 62. Sato, K., Saito, R., Oyama, Y., Jiang, J., Canęado, L. G., Pimenta, M. A. Jorio, A.; Samsonidze, Ge. G. Dresselhaus, G. & Dresselhaus, M. S., 2006. D-band Raman intensity of graphitic materials as a function of laser energy and crystallite size. Chemical Physics Letters, 427: 117-121.
  • 63. Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. 2012. NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9: 671-675.
  • 64. Słaby, E., 1992. Changes in the structural state of secondary albite during progressive albitization. Neues Jahrbuch fur Mineralogie Abhandlungen, 7: 321-335.
  • 65. Smith, J. V. & Brown, W. L., 1988. Diffusion, growth, twins and intergrowths (part 4). In: Smith, J. V. & Brown, W. L. (eds), Feldspar Minerals. 1. Crystal Structures, Physical, Chemical and Microtextural Properties, 2nd edition. Springer-Verlag, Berlin, pp. 398-647.
  • 66. Stankowski, W., 2008. Morasko meteorite: a curiosity of the Poznań region. Time and results of the fall. Adam Mickiewicz University Press, Seria Geologia, 19: 91.
  • 67. Stoffler, D., Keil, K. & Scott, E. R. D., 1991. Shock metamorphism of ordinary chondrites, Geochimica et Cosmochimica Acta, 55: 3845-3867.
  • 68. Takeda, H., Bogard, D. D., Mittlefehldt, D. W. & Garrison, D. H., 2000. Mineralogy, petrology, chemistry, and 39Ar-40Ar and exposure ages of the Caddo County IAB iron: evidence for early partial melt segregation of a gabbro area rich in plagioclase-diopside. Geochimica et Cosmochimica Acta, 64: 1311-1327.
  • 69. Tuinstra, F. & Koenig, J. L., 1970, Raman spectrum of graphite. The Journal of Chemical Physics, 53: 1126-1130.
  • 70. Upton, B. G. J., Macdonald, R., Odling, N., Rämo, O. T. & Bagiński, B., 2013. Kungnât, revisited. A review of five decades of research into an alkaline complex in South Greenland, with new trace-element and Nd isotopic data. Mineralogical Magazine, 77: 523-550.
  • 71. Vance, J. A., 1961. Polysynthetic twinning in plagioclase. American Mineralogist, 46: 1097-1119.
  • 72. Von Stengel, M. O., 1977. Normalschwingungen von Alkalifeld- späten. Zeitschrift für Kristallografie, 146: 1-18. [In German, with English abstract.]
  • 73. Wang, Y., Alsmeyer, D. C. & McCreery R. L., 1990. Raman spectroscopy of carbon materials: structural basis of observed spectra. Chemistry of Materials, 2: 557-563.
  • 74. Wassenburg, G. J., Sanz, H. G. & Bence, A. E., 1968. Potassium-feldspar phenocrysts in the surface of Colomera and iron meteorite. Science, 161: 684-687.
  • 75. Wasson, J. T. & Kallemeyn, G. W., 2002. The IAB iron-meteorite complex: A group, five subgroups, numerous grouplets, closely related, mainly formed by crystal segregation in rapidly cooling melts. Geochimica et Cosmochimica Acta, 66: 2445-2473.
  • 76. Wasson, J. T., Willis, J., Wai, C. M. & Kracher, A., 1980. Origin of iron meteorite groups IAB and IIICD. Zeitschrift für Naturforschung, 35a: 781-795.
  • 77. White, J. C., Parker, D. F. & Ren, M., 2009. The origin of trachyte and pantellerite from Pantelleria, Italy: Insights from major element, trace element, and thermodynamic modelling. Journal of Volcanology and Geothermal Research, 179: 33-55.
  • 78. White, W. M., 2013. Geochemistry. Wiley-Blackwell, Hoboken, United States, 668 pp.
  • 79. Willaime, C. & Brown, W. L., 1974. A coherent elastic model for the determination of the orientation of exsolution boundaries: Application to the feldspars. Acta Crystallographica, A30: 313-331.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-43ff963c-7af7-4d57-8549-00cec6d36096
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.