PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Internal heat loads in LUNARES analogue planetary base - a case study

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This case study work focuses on recognising and quantifying internal heat sources in the first European analogue planetary base: the recently constructed Polish LUNARES habitat. The paper explains the necessity of conducting analogue space missions prior to an actual manned exploration of the Moon and Mars. Notions of internal heat loads and gains have been elaborated along with their significance for developing space building physics. This paper presents the results of thorough inspection of all internal heat sources, conducted by one of the authors during ICAres-1 Mars analogue mission aboard the LUNARES base. Three main sources of internal heat loads were identified and carefully studied; the habitat’s electrical equipment, the crew body heat and their personal appliances. These heat loads were calculated and total internal heat load of the base was established and discussed. The results of this study may serve as a baseline for predicting internal heat loads aboard actual planetary bases.
Twórcy
  • Politechnika Rzeszowska, Zakład Budownictwa Ogólnego, ul. Poznańska 2, 35-959 Rzeszów; tel. +48178651026
  • Research Development and Medical Manager, LUNARES Mobile Research Station, Space Garden
Bibliografia
  • [1] Heinicke Ch., Orzechowski L., Abdullah R., von Einem M., Arnhof M.: Updated Design Concepts of the Moon and Mars Base Analogue (MaMBA). EPSC Abstracts 2018 Vol. 12, EPSC2018-599-2, 2018 European Planetary Science Congress 2018.
  • [2] Coşkun T., Turhan C., Durmuş Arsan Z., Gökçen Akkurt G.: The Importance of Internal Heat Gains for Building Cooling Design. Journal of Thermal Engineering 2017, Vol. 3, No. 1, pp. 1060-1064, January, 2017.
  • [3] Internal Heat Gain - an overview ScienceDirect Topics, https://www.sciencedirect.com/topics/engineering/internal-heat-gain.
  • [4] Monstvilas E., Banionis K., Stankevičius V., Karbauskaite J., Bliūdžius R.: Heat gains in buildings - Limit conditions for calculating energy consumption. Journal of Civil Engineering and Management.
  • [5] Starakiewicz A.: Zużycie nośników energii w budynku jednorodzinnym na cele ogrzewania ciepłej wody użytkowej i potrzeb bytowych, Czasopismo Inżynierii Lądowej, Środowiska i Architektury - Journal of Civil Engineering, Environment and Architecture, JCEEA, 2016, t. XXXIII, z. 63 (3/16), lipiec-wrzesień 2016, s. 439-446, DOI: 10.7862/rb.2016.227.
  • [6] Elsarrag E., Alhorr Y.: Modelling the thermal energy demand of a Passive-House in the Gulf Region: The impact of thermal insulation. International Journal of Sustainable Built Environment 2012, Volume 1, Issue 1, June 2012, pp. 1-15.
  • [7] Hanford A. J.: Advanced Life Support Baseline Values and Assumptions Document. NASA/CR-2004-208941.
  • [8] Life Support Systems - Sustaining Humans Beyond Earth, https://www.nasa.gov/content/life-support-systems.
  • [9] Simonsen L.J., DeBarro M.J., Farmer J.T.: Conceptual design of a lunar base thermal control system. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19930004815.pdf.
  • [10] Swanson T. D., Radermacher R., Costello F. A., Moore J. S., Mengers D.R.: LowTemperature Thermal Control. SAE Technical Paper Series 901242.
  • [11] Sridhar K. R., Gottmann M.: Lunar base thermal control systems using heat pumps, Acta Astronautica 1996, Vol. 39. No. 5, pp. 381-394, 1996, https://doi.org/10.1016/ S0094-5765(96)00100-2.
  • [12] Kaczmarzyk M., Gawroński M., Piątkowski G.: Global database of direct solar radiation at the Moon’s surface for lunar engineering purposes E3S Web Conf., 2018 49, 00053 DOI 10.1051/e3sconf/20184900053.
  • [13] Kaczmarzyk M., Gawroński M., Piątkowski G.: Application of Finite Difference Method for determining lunar regolith diurnal temperature distribution, E3S Web Conf., 2018 49, 00052 DOI 10.1051/e3sconf/20184900052.
  • [14] Grabowski M. et al.: An Experimental Platform for Quantified Crowd. 24th International Conference on Computer Communication and Networks, ICCCN 2015, Las Vegas, NV, USA, August 3-6, 2015, 2015.
  • [15] Rüb I., Matraszek M., Konorski P., Perycz M.: 30 Sensors to Mars: Toward Distributed Support Systems for Astronauts in Space Habitats. IEEE 39th International Conference on Distributed Computing Systems (ICDCS 2019).
  • [16] Manore M., Thompson J.: Sport Nutrition for Health and Performance. Human Kinetics. 2000 ISBN 978-0-87322-939-5.
  • [17] Neto A., Fiorelli F.: Comparison between detailed model simulation and artificial neural network for forecasting building energy consumption. Energy and Buildings 40 (2008) 2169–2176.
  • [18] Kim H., Park K., Kim H.Y., Song Y.: Study on Variation of Internal Heat Gain in Office Buildings by Chronology. Energies 2018, 11, 1013.
  • [19] Landis G. A., Bailey S. G.: Photovoltaic power for a lunar base. Acta Astronautica 1990, vol. 22, pp. 197-203 (1990).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-43ff7170-d53f-4d14-86cb-28d794e8d1bf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.