PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Non-uniqueness of fracture parameter choice in simulations of concrete cracking at mesoscale level

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the paper a non-uniqueness of fracture parameter choice in simulations of cracking process in plain concrete specimens at mesoscale level under monotonic static loading is analysed. The Finite Element Method is used, where cracks are defined in a discrete way using interface cohesive elements with nonlinear material law including softening. The concrete mesostructure (such as: cement matrix, air voids, aggregates, and Interfacial Transitions Zones (ITZ)) is taken into account. Two benchmarks: Montevideo splitting test (MVD) as a main test and the three-point beam bending test (TPBT) as an auxiliary problem are simulated. Results from 2D calculations are compared with experimental outcomes, especially force-crack opening curves and crack patterns are carefully studied. In the MVD test, the mesostructure of a specimen is taken from X-ray micro-computed tomography scans of real samples. The issue of the proper selection of material parameters for cohesive cracks is investigated. The ambiguity of such a process is presented and discussed. It turns out the numerical simulations can give the same outcome for different values of material parameters. The influence of the selected material parameters and the friction coefficient on results (force–crack opening curves and crack patterns) is also analysed.
Rocznik
Strony
365--396
Opis fizyczny
Bibliogr. 48 poz., rys., tab., wykr.
Twórcy
autor
  • Gdansk University of Technology, Faculty of Civil and Environmental Engineering, 11/12 Gabriela Narutowicza Street, 80-233 Gdansk, Poland
autor
  • Gdansk University of Technology, Faculty of Civil and Environmental Engineering, 11/12 Gabriela Narutowicza Street, 80-233 Gdansk, Poland
autor
  • Gdansk University of Technology, Faculty of Civil and Environmental Engineering, 11/12 Gabriela Narutowicza Street, 80-233 Gdansk, Poland
Bibliografia
  • 1. J. Tejchman, J. Bobinski, Continuous and Discontinuous Modelling of Fracture in Concrete Using FEM, Springer, Berlin, Heidelberg, 2013.
  • 2. J. Farran, Contribution minéralogique à l’étude de l’adhérence entre les constituants hydratés des ciments et les matériaux enrobés, Review of Construction Materials (Revue des Matériaux de Construction), 490, 155–172, 1956.
  • 3. D.P. Bentz, P.E. Stutzman, E.J. Garboczi, Experimental and simulation studies of the interfacial zone in concrete, Cement and Concrete Research, 22, 891–902, 1992.
  • 4. T. Akçao˜glu, M. Tokyay, T. Çelik, Effect of coarse aggregate size and matrix quality on ITZ and failure behavior of concrete under uniaxial compression, Cement and Concrete Composites, 26, 633–638, 2004.
  • 5. M. Nitka, J. Tejchman, Meso-mechanical modelling of damage in concrete using discrete element method with porous ITZs of defined width around aggregates, Engineering Fracture Mechanics, 231, 107029, 2020.
  • 6. J. Wang, A.P. Jivkov, D.L. Engelberg, Q.M. Li, Meso-scale modelling of mechanical behaviour and damage evolution in normal strength concrete, Procedia Structural Integrity, 13, 560–565, 2018.
  • 7. S. Zhang, C. Zhang, L. Liao, C. Wang, Numerical study of the effect of ITZ on the failure behaviour of concrete by using particle element modelling, Construction and Building Materials, 170, 776–789, 2018.
  • 8. X. Huang, B.L. Karihaloo, Micromechanical modelling of the tensile behaviour of quasi-brittle materials, [in:] W.B. Lee [ed.], Advances in Engineering Plasticity and Its Applications, pp. 267–272, Elsevier, Oxford, 1993.
  • 9. A. Hillerborg, M. Modéer, P.-E. Petersson, Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements, Cement and Concrete Research, 773–782, 1976.
  • 10. J.G. Rots, Smeared and discrete representations of localized fracture, [in:] Z.P. Bažant [ed.], Current Trends in Concrete Fracture Research, pp. 45–59, Springer, Netherlands, Dordrecht, 1991.
  • 11. L. Jendele, J. Cervenka, V. Saouma, R. Pukl, On the choice between discrete or smeared approach in practical structural FE analyses of concrete structures, n.d.
  • 12. R. de Borst, J.J.C. Remmers, A. Needleman, M.-A. Abellan, Discretevs smeared crack models for concrete fracture: bridging the gap, International Journal for Numerical and Analytical Methods in Geomechanics, 28, 583–607, 2004.
  • 13. P. Menétrey, K.J. Willam, Triaxial failure criterion for concrete and its generalization, ACI Structural Journal, 92, 311–318, 1995.
  • 14. G. Meschke, R. Lackner, H.A. Mang, An anisotropic elastoplastic-damage model for plain concrete, International Journal for Numerical Methods in Engineering, 42, 703–727, 1998.
  • 15. I. Marzec, J. Bobinski, On Some Problems in Determining Tensile Parameters of Concrete Model from Size Effect Tests, Polish Maritime Research, 26, 115–125, 2019.
  • 16. Ł. Skarzynski, I. Marzec, A. Tejchman-Konarzewski, Experiments and numerical analyses for composite RC-EPS slabs, Computers and Concrete, 20, 689–704, 2017.
  • 17. Ł. Skarzynski, I. Marzec, K. Drag, J. Tejchman, Numerical analyses of novel prefabricated structural wall panels in residential buildings based on laboratory tests in scale 1:1, European Journal of Environmental and Civil Engineering, 24, 1450–1482, 2020.
  • 18. R. Desmorat, F. Gatuingt, F. Ragueneau, Nonlocal anisotropic damage model and related computational aspects for quasi-brittle materials, Engineering Fracture Mechanics, 74, 1539–1560, 2007.
  • 19. P. Grassl, D. Xenos, U. Nyström, R. Rempling, K. Gylltoft, CDPM2: A damageplasticity approach to modelling the failure of concrete, International Journal of Solids and Structures, 50, 3805–3816, 2013.
  • 20. W. Trawinski, J. Bobinski, J. Tejchman, Two-dimensional simulations of concrete fracture at aggregate level with cohesive elements based on X-ray _CT images, Engineering Fracture Mechanics, 168, 204–226, 2016.
  • 21. W. Trawinski, J. Tejchman, J. Bobinski, A three-dimensional meso-scale modelling of concrete fracture, based on cohesive elements and X-ray _CT images, Engineering Fracture Mechanics, 189, 27–50, 2018.
  • 22. H. Akita, H. Koide, M. Tomon, D. Sohn, A practical method for uniaxial tension test of concrete, Materials and Structures, 36, 365–371, 2003.
  • 23. D.V. Phillips, Z. Binsheng, Direct tension tests on notched and un-notched plain concrete specimens, Magazine of Concrete Research, 45, 25–35, 1993.
  • 24. F.H. Wittmann, K. Rokugo, E. Brühwiler, H. Mihashi, P. Simonin, Fracture energy and strain softening of concrete as determined by means of compact tension specimens, Materials and Structures, 21, 21–32, 1988.
  • 25. A. Fernández-Canteli, L. Casta¯nón, B. Nieto, M. Lozano, T. Holušová, S. Seitl, Determining fracture energy parameters of concrete from the modified compact tension test, Frattura Ed Integrità Strutturale, 8, 383–393, 2014.
  • 26. A. Pros, P. Díez, C. Molins, Numerical modeling of the double punch test for plain concrete, International Journal of Solids and Structures, 48, 1229–1238, 2011.
  • 27. C. Rocco, G.V. Guinea, J. Planas, M. Elices, Size effect and boundary conditions in the Brazilian test: Experimental verification, Materials and Structures, 32, 210–217, 1999.
  • 28. C. Rocco, G.V. Guinea, J. Planas, M. Elices, Size effect and boundary conditions in the Brazilian test: theoretical analysis, Materials and Structures, 32, 437–444, 1999.
  • 29. M.R. Khosravani, M. Silani, K. Weinberg, Fracture studies of Ultra-High Performance Concrete using dynamic Brazilian tests, Theoretical and Applied Fracture Mechanics, 93, 302–310, 2018.
  • 30. N. Erarslan, Analysing mixed mode (I–II) fracturing of concrete discs including chevron and straight-through notch cracks, International Journal of Solids and Structures, 167, 79–92, 2019.
  • 31. P.E. Peterson, Fracture energy of concrete: method of determination, Cement and Concrete Research, 10, 79–89, 1980.
  • 32. H. Linsbauer, E. Tschegg, Fracture energy determinationof concrete with cube specimens, Zement Und Beton, 38–40, 1986.
  • 33. E. Brühwiler, F.H. Wittmann, The wedge splitting test, a new method of performing stable fracture mechanics tests, Engineering Fracture Mechanics, 35, 117–125, 1990.
  • 34. L. Segura-Castillo, R. Monte, A.D. de Figueiredo, Characterisation of the tensile constitutive behaviour of fibre-reinforced concrete: a new configuration for the Wedge Splitting Test, Construction and Building Materials, 192, 731–741, 2018.
  • 35. Ł. Skarzynski, J. Suchorzewski, Mechanical and fracture properties of concrete reinforced with recycled and industrial steel fibers using Digital Image Correlation technique and X-ray micro computed tomography, Construction and Building Materials, 183, 283–299, 2018.
  • 36. M. Di Prisco, L. Ferrara, M.G.L. Lamperti, Double edge wedge splitting (DEWS): an indirect tension test to identify post-cracking behaviour of fibre reinforced cementitious composites, Materials and Structures, 46, 1893–1918, 2013.
  • 37. A. Hillerborg, The theoretical basis of a method to determine the fracture energy GF of concrete, Materials and Structures, 291–296, 1985.
  • 38. Y. Yin, Y. Qiao, S. Hu, Four-point bending tests for the fracture properties of concrete, Engineering Fracture Mechanics, 211, 371–381, 2019.
  • 39. X. Xiong, Q. Xiao, Meso-scale simulation of concrete based on fracture and interaction behavior, Applied Sciences, 9, 2986, 2019.
  • 40. J. Ying, J. Guo, Fracture behaviour of real coarse aggregate distributed concrete under uniaxial compressive load based on cohesive zone model, Materials, 14, 4314, 2021.
  • 41. B. Kondys, J. Bobinski, I. Marzec, Numerical investigations of discrete crack propagation in Montevideo splitting test using cohesive elements and real concrete micro-structure, [in:] Computational Modelling of Concrete and Concrete Structures, pp. 107–116, CRC Press, London, 2022.
  • 42. T.J. Truster, DEIP, discontinuous element insertion Program – Mesh generation for interfacial finite element modeling, SoftwareX, 7, 162–170, 2018.
  • 43. P.-E. Petersson, Crack Growth and Development of Fracture Zones in Plain Concrete and Similar Materials, Lund Institute of Technology, Lund, 1981.
  • 44. G.I. Barenblatt, The mathematical theory of equilibrium cracks in brittle fracture, Advances in Applied Mechanics, 7, 55–129, 1962.
  • 45. W. Ren, Z. Yang, R. Sharma, C. Zhang, P.J. Withers, Two-dimensional X-ray CT image based meso-scale fracture modelling of concrete, Engineering Fracture Mechanics, 133, 24–39, 2015.
  • 46. Ł. Skarzynski, M. Nitka, J. Tejchman, Modelling of concrete fracture at aggregate level using FEM and DEM based on X-ray _CT images of internal structure, Engineering Fracture Mechanics, 147, 13–35, 2015.
  • 47. X. Xi, Z. Yin, S. Yang, C.-Q. Li, Using artificial neural network to predict the fracture properties of the interfacial transition zone of concrete at the meso-scale, Engineering Fracture Mechanics, 242, 107488, 2021.
  • 48. B.G. Rabbat, H.G. Russell, Friction coefficient of steel on concrete or grout, Journal of Structural Engineering, 111, 505–515, 1985.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-43f876ea-f53a-4874-8b9a-cf038c5ed2f9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.