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Abstract. The paper presents the solution of a fourth order differential equation with various 

coefficients occurring in the vibration problem of the Euler-Bernoulli beam. The concern-

ing equation is written as a first order matrix differential equation. To solve the equation, 

the power series method is proposed.  
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Introduction 

For certain cases of differential equations with variable coefficients, it is possi-

ble to determine their exact solutions [1-4], using e.g. homotopy analysis [3] or the 

Green's functions method [4]. However, in most cases, in order to obtain a solution 

it is necessary to apply approximate methods, such as finite difference method [5], 

the power series method [6], differential transformation method (DTM) - “improved” 

Taylor method [5, 7, 8] or by the use of the Lagrange multiplier formalism [9]. 

This paper is a continuation of consideration, shown at [10], relating to the use of 

a matrix and power series methods for solving ordinary differential equations. 

The work presents, as an example for proposed method, the solution to the equa- 

tion of motion of the non-uniform beam, described according to the Euler-Bernoulli 

theory, by the equation of the fourth order. 

Formulation and solution of the problem 

Basic concepts of the procedure 

At the beginning, let us recall the procedure schema for a fourth order linear 

differential equation: 
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completed by initial conditions. By introducing functions: ( ) ( )xyxy
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form of power series, we can rewrite (1) as a first order matrix differential equation 

[10]: 
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In the above equation, the following designations were charged: 
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and a boundary condition is ( )
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0 YY = . 

A solution of an inhomogeneous equation (2), in the power series form, can be 

expressed as a sum 
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where 0=
0
Φ , EΨ =

0
 and 

n
Φ , 

n
Ψ  are determined from the recursive relations.  

The first few values of those parameters are: 
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Beam’s equation of motion 

According to the Euler-Bernoulli theory, the motion of the beam length L, with 

a various cross-section area A(x) and moment of inertia I(x) (Fig. 1), is described 

by the partial differential equation: 
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where u is the function of deflection, ρ is the mass density and E is the Young’s 

modulus. Equation (5) is complemented by appropriate boundary conditions 

depending on the method of fixing the ends of the beam. 

 

 
Fig. 1. A sketch of considered beam 

Assuming a sinusoidal rotation of function ( ) ( ) ti
exytxu
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=, , the equation of motion 

can be rewritten as: 
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with natural frequency ω. Next, let us assume the cross-section area and the moment 

of inertia in the form of polynomials: 
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where A0 = A(0), I0 = I(0), α ≠ 1 is a proportionality factor of the beam’s cross-

section and [ ]Lx ,0∈ . After a few transformations, equation (6) can be expressed 

as equation (1), where: 
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Parameter Ω characterizes the vibration frequency of the beam and is given by 

formula 
0

0
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4
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Aρω
=Ω . Note that functions a(x) and a

2
(x) can be presented as power 

series: 
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Of course, we have to ensure the convergence of the series, hence: 
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Matrix B(x) occurring in (2) is in the form: 
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and solution of (6) is given by relation (3) for 0=
n
Φ  and 

n
Ψ  as in (4). 

In the case 1=α  we’ve got a vibration problem of the Euler-Bernoulli beam 

with constant parameters characterizing its physical properties. Equation (5) has 

the form: 
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We can note, that ( ) ( ) ( ) 0
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ing to discussed method, matrices B
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 are as follows: 
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The solution of the boundary problem: ( ) ( ) ( ) ( )xxxx FYBY +=′ , ( )
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The general solution of equation (6) depends on four constants, which are 

determined from the boundary conditions. For example, the boundary conditions 

for a cantilever beam are 
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Conclusions 

In the present study, the method reducing the fourth order differential equation 

to the form of the first order matrix equation was considered on the example of 

non-uniform beam’s vibration equation. Considerations show that it is a relatively 

simple method of solving the boundary problem, reduced to a form which is easy 

for computer implementation. If only the functions occurring in the equations are 

the appropriate class, and it’s possible to expand them in power series, then in the 

interval of convergence of these series, the presented method can also be used to 

solve more complex problems described by differential equations. 
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