PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

On the Comparison of Various Overhead Arrangements for Massive MIMO-OFDM Channel Estimation

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Massive multi input multi output (MIMO) systems incorporate orthogonal frequency division multiplexing (OFDM) technology to render high data rate services for future wireless communication applications. The channel estimator (CE) employed by a reliable massive MIMO-OFDM system requires huge amount of overhead in the form of known and null data transmissions, hence limiting the system spectral efficiency (SE). Often, CE design is a tradeoff between SE and system reliability. In this paper, CE with three different overhead arrangements, namely time domain synchronous (TDS), comb type with cyclic prefix (CTCP), 2D grid type with cyclic prefix (GTCP) are investigated and a GTCP based CE is proposed which offers both high SE and improved system reliability. The proposed CE uses autocorrelation based denoising threshold for channel impulse response (CIR) estimation and does not require any knowledge of channel statistics (KCS). A416 MIMO-OFDM system is simulated in a rayleigh fading channel environment with U-shaped doppler spectrum. From the bit error rate (BER) performance results in WiMax SUI-4, Advanced Television Technology Center (ATTC) and Brazil A channel environments, it is verified that the proposed CE with GTCP overhead and proposed denoising scheme, indeed improves both SE and system reliability. Hence it is suitable for application in all massive MIMO-OFDM systems.
Twórcy
autor
  • REVA Institute of Technology and Management Bangalore, India
autor
  • Bapatla Engineering College, Bapatla
Bibliografia
  • [1] L. Dai, Z. Wang, and Z. Yang, “Spectrally efficient time-frequency training ofdm for mobile large-scale mimo systems,” Selected Areas in Communications, IEEE Journal on, vol. 31, no. 2, pp. 251–263, 2013.
  • [2] X. Su, J. Zeng, L.-P. Rong, and Y.-J. Kuang, “Investigation on key technologies in large-scale mimo,” Journal of Computer Science and Technology, vol. 28, no. 3, pp. 412–419, 2013. [Online]. Available: http://dx.doi.org/10.1007/s11390-013-1342-4.
  • [3] H. Q. Ngo, E. G. Larsson, and T. L. Marzetta, “Energy and spectral efficiency of very large multiuser mimo systems,” CoRR, vol. abs/1112.3810, 2011.
  • [4] L. Dai, Z. Wang, and S. Chen, “A novel uplink multiple access scheme based on tds-fdma, ” Wireless Communications, IEEE Transactions on, vol. 10, no. 3, pp. 757–761, 2011.
  • [5] J. W. Z. T. P. M. M. Dai, L Wang, “Time domain synchronous ofdmbased on simultaneous multi-channel reconstruction,” ser. Proc. of the IEEE International Confence on Communications, 2013, pp. 1–5.
  • [6] S. K. Mohammed, A. Zaki, A. Chockalingam, and B. S. Rajan, “High-rate space-time coded large mimo: Low-complexity detection and channel estimation,” CoRR, vol. abs/0809.2446, 2008.
  • [7] S. Coleri, M. Ergen, A. Puri, and A. Bahai, “Channel estimation techniques based on pilot arrangement in ofdm systems,” Broadcasting, IEEE Transactions on, vol. 48, no. 3, pp. 223–229, 2002.
  • [8] K. Zheng, J. Su, and W. Wang, “Iterative dft-based channel estimation for mimo-ofdm systems,” in Communications, Circuits and Systems Proceedings, 2006 International Conference on, vol. 2, 2006, pp. 1081–1085.
  • [9] W. Li, X. Wang, P. Gu, and D. Wang, “Research on channel estimation of mimo-ofdm system,” in Informatics and Management Science III, ser. Lecture Notes in Electrical Engineering, W. Du, Ed. Springer London, 2013, vol. 206, pp. 67–73.
  • [10] S. Rosati, G. Corazza, and A. Vanelli-Coralli, “Ofdm channel estimation based on impulse response decimation: Analysis and novel algorithms,” Communications, IEEE Transactions on, vol. 60, no. 7, pp. 1996–2008, 2012.
  • [11] J. Oliver, R. Aravind, and K. M. M. Prabhu, “Sparse channel estimation in ofdm systems by threshold-based pruning,” IEEE Electronics Letters, vol. 44, no. 13, pp. 830–832, 2008.
  • [12] S. M. v. d. B. J.-J. W. S. B. Edfors, O., “Analysis of dft based channel estimators for ofdm,” Wireless Personal Communications, vol. 12, pp. 55–70, 2000.
  • [13] M. R. Raghavendra and K. Giridhar, “Improving channel estimation in ofdm systems for sparse multipath channels,” IEEE Signal Processing Letters, vol. 12, no. 1, pp. 52–55, 2005.
  • [14] Y. Kang, K. Kim, and H. Park, “Efficient dft-based channel estimation for ofdm systems on multipath channels,” Communications, IET, vol. 1, no. 2, pp. 197–202, 2007.
  • [15] Y.-S. Lee, H.-C. Shin, and H. N. Kim, “Channel estimation based on a time-domain threshold for ofdm systems,” Broadcasting, IEEE Transactions on, vol. 55, no. 3, pp. 656–662, 2009.
  • [16] H. Xie, G. Andrieux, Y. Wang, J.-F. Diouris, and S. Feng, “Efficient time domain threshold for sparse channel estimation in (OFDM) system,” AEU- International Journal of Electronics and Communications, pp. – 2013.
  • [17] I. Choi, J.-K. Kim, H. Lee, and I. Lee, “Alamouti-codes based four-antenna transmission schemes with phase feedback,” Communications Letters, IEEE, vol. 13, no. 10, pp. 749–751, October 2009.
  • [18] W. Y. Y.-C. G. K. Yong Soo Cho, Jaekwon Kim, MIMO OFDM Wireless Communications with MATLAB. Wiley, 2010.
  • [19] L. Zhinian and Z. Wenjun, “Simulation for correlated rayleigh fading channels by fir pulse-shaping filtering,” in Wireless Communications, Networking and Mobile Computing, 2007. WiCom 2007. International Conference on, 2007, pp. 1091–1094.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-43f7885a-0bfc-4f81-b1d9-1c4bc80201c4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.