Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
O subordynowanych uogólnieniach 3 klasycznych modeli wyceny opcji
Języki publikacji
Abstrakty
In this paper, we investigate the relation between Bachelier and Black-Scholes models driven by the inverse subordinators. Such models, in contrast to their classical equivalents, can be used in markets where periods of stagnation are observed. We introduce the subordinated Cox-Ross-Rubinstein model and prove that the price of the underlying in that model converges in distribution and in Skorokhod space to the price of underlying in the subordinated Black-Scholes model defined in [24]. Motivated by this fact we price the selected option contracts using the binomial trees. The results are compared to other numerical methods.
W tym artykule badamy relację pomiędzy modelami Bacheliera i Blacka-Scholesa zależnymi od odwrotnego subordynatora. Modele te, w przeciwieństwie do swoich klasycznych odpowiedników mogą być wykorzystane na rynkach gdzie zauważalne są okresy stagnacji. Ponadto, wprowadzamy subordynowany model Coxa-Rossa-Rubinsteina i pokazujemy zbieżność instrumentu podstawowego w tym modelu według rozkładu i w przestrzeni Skorochoda do ceny instrumentu podstawowego w subordynowanym modelu Blacka-Scholesa zdefiniowanym w [25]. Zmotywowani tym faktem wyceniamy wybrane kontrakty opcyjne za pomocą drzewek dwumianowych. Wyniki porównujemy do innych metod numerycznych.
Wydawca
Czasopismo
Rocznik
Tom
Strony
3--25
Opis fizyczny
Bibliogr. 34 poz., wykr.
Twórcy
autor
- Wrocław University of Science and Technology & Hugo Steinhaus Center Faculty of Pure and Applied Mathematics Wybrzeże Wyspiańskiego 27, PL-50–370 Wrocław
- Wrocław University of Science and Technology & Hugo Steinhaus Center Faculty of Pure and Applied Mathematics Wybrzeże Wyspiańskiego 27, PL-50–370 Wrocław
autor
- Wrocław University of Science and Technology & Hugo Steinhaus Center Faculty of Pure and Applied Mathematics Wybrzeże Wyspiańskiego 27, 50–370 Wrocław
Bibliografia
- [1] L. Bachelier. Théorie de la spéculation. Gauthier-Villars, Paris, 1900. JFM 31.0075.12,Zbl 2664794. Cited on pp. 3 and 6.
- [2] F. Black and M. Scholes. The pricing of options and corporate liabilities. Journal of Political Economy, 81(3):637-654, may 1973. doi:10.1086/260062. Zbl 1092.91524. Cited on p. 3.
- [3] S. Borak, A. Misiorek, and R. Weron. Models for heavy-tailed asset returns. In P. Cizek, W. K. Härdle, and R. Weron, editors, Statistical Tools for Finance and Insurance, pages 21-55. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011. ISBN 978-3-642-18062-0. doi: 10.1007/978-3-642-18062-0_1. Cited on p. 4.
- [4] U. Çetin, R. A. Jarrow, and P. Protter. Liquidity risk and arbitrage pricing theory. In C.-F. Lee, A. C. Lee, and J. Lee, editors, Handbook of Quantitative Finance and Risk Management, pages 1007-1024. Springer US, Boston, MA, 2010. ISBN 978-0-387-77117-5. doi: 10.1007/978-0-387-77117-5_64. Cited on p. 7.
- [5] T. Cheuk and T. Vorst. Currency lookback options and observation frequency: a binomial approach. Journal of International Money and Finance, 16(2):173-187, 1997. Cited on p. 19.
- [6] R. Cont and P. Tankov. Financial modelling with jump processes, Chapman & Hall/CRC Financ. Math. Ser, 2004. Cited on p. 7.
- [7] J. Cox, S. Ross, and M. Rubinstein. Option pricing: A simplified approach. Journal of Financial Economics, 7(3):229-263, 1979. Zbl 1131.91333. Cited on pp. 5, 11, 12, 13, 15, 16, and 20.
- [8] J. Di Nunno and B. Øksendal. Advanced mathematical methods for finance. Springer Science & Business Media, 2011. Zbl 1211.91008. Cited on p. 15.
- [9] S. Focardi and F. Fabozzi. The mathematics of financial modeling and investment management, volume 138. John Wiley & Sons, 2004. Cited on p. 3.
- [10] V. Gonchar, A. Chechkin, E. Sorokovoi, V. Chechkin, L. Grigor’eva, and E. Volkov. Stable Lévy distributions of the density and potential fluctuations in the edge plasma of the U-3M torsatron. Plasma Physics Reports, 29(5):380-390, 2003. Cited on p. 4.
- [11] S. Heston and G. Zhou. On the rate of convergence of discrete time contingent claims. Mathematical Finance, 10(1):53-75, 2000. Zbl 1034.91041. Cited on p. 17.
- [12] F. Heuwelyckx. Convergence of European lookback options with floating strike in the binomial model. International Journal of Theoretical and Applied Finance, 17(04):1450025, 2014. Zbl 1308.91189. Cited on p. 20.
- [13] J. Hull. Options futures and other derivatives. Pearson Education India, 2003. Zbl 1087.91025. Cited on p. 4.
- [14] A. Janicki and A. Weron. Can one see α-stable variables and processes? Statistical Science, pages 109-126, 1994. Zbl 0955.60508. Cited on p. 4.
- [15] G. Krzyżanowski. Selected applications of differential equations in Vanilla Options valuation. Mathematica Applicanda, 46(2), 2018. Zbl 1463.91200. Cited on pp. 3, 7, and 8.
- [16] G. Krzyżanowski and M. Magdziarz. A computational weighted finite difference method for American and barrier options in subdiffusive Black-Scholes model. Communications in Nonlinear Science and Numerical Simulation, 96:105676, 2021. ISSN 1007-5704. Cited on pp. 4, 11, 17, 18, and 19.
- [17] G. Krzyżanowski and M. Magdziarz. A tempered subdiffusive Black-Scholes model. Fractional Calculus and Applied Analysis, page 35pp., 2024. doi: 10.1007/s13540-024-00276-2. Cited on pp. 4 and 11.
- [18] G. Krzyżanowski and A. Sosa. Zero Black-Derman-Toy model in catastrophic events: Covid-19 performance analysis. Journal of Derivatives, 30(1), 2022. Cited on p. 8.
- [19] G. Krzyżanowski, M. Magdziarz, and Ł. Płociniczak. A weighted finite difference method for subdiffusive Black–Scholes model. Computers & Mathematics with Applications, 80(5):653–670, 2020. Zbl 1459.91220. Cited on pp. 4, 11, and 17.
- [20] G. Krzyżanowski, E. Mordecki, and A. Sosa. Zero Black–Derman–Toy Interest Rate Model. The Journal of Fixed Income, 31(3):93-111, 2021. Cited on p. 8.
- [21] S. Kullback and R. A. Leibler. On information and sufficiency. Ann. Math. Stat., 22:79–86, 1951. ISSN 0003-4851. doi:10.1214/aoms/1177729694. Zbl 0042.38403. Cited on p. 7.
- [22] F. Longstaff and E. Schwartz. Valuing american options by simulation: a simple least-squares approach. The review of financial studies, 14(1): 113-147, 2001. Zbl 1386.91144. Cited on p. 19.
- [23] M. Magdziarz. Black-Scholes formula in subdiffusive regime. Journal of Statistical Physics, 136(3):553-564, 2009. Zbl 1173.82026. Cited on pp. 4, 8, 10, 18, and 20.
- [24] M. Magdziarz. Langevin picture of subdiffusion with infinitely divisible waiting times. Journal of Statistical Physics, 135(4):763-772, 2009. Zbl 1177.82101. Cited on p. 5.
- [25] M. Magdziarz and J. Gajda. Anomalous dynamics of Black-Scholes model time-changed by inverse subordinators. Acta Physica Polonica B, 43(5), 2012. Cited on pp. 5, 7, 8, 9, 12, and 24.
- [26] M. Magdziarz, S. Orzeł, and A. Weron. Option pricing in subdiffusive Bachelier model. Journal of Statistical Physics, 145(1):187, 2011. Zbl 1269.82053. Cited on pp. 4, 5, 6, 7, 8, 9, and 10.
- [27] M. Meerschaert and H. Scheffler. Triangular array limits for continuous time random walks. Stochastic processes and their applications, 118(9): 1606–1633, 2008. Zbl 1229.60058. Cited on p. 6.
- [28] M. M. Meerschaert and P. Straka. Inverse stable subordinators. Math. Model. Nat. Phenom., 8(2):1-16, 2013. ISSN 0973-5348. doi: 10.1051/mmnp/20138201. Zbl 1274.60153. Cited on p. 10.
- [29] R. Merton. Theory of rational option pricing. The Bell Journal of Economics and Management Science, 4:141-183, 1973. ISSN 0741-6261. doi: 10.2307/3003143. Zbl 1257.91043. Cited on p. 3.
- [30] A. Piryatinska, A. Saichev, and W. Woyczynski. Models of anomalous diffusion: the subdiffusive case. Physica A: Statistical Mechanics and its Applications, 349(3-4):375-420, 2005. Cited on p. 10.
- [31] I. Podlubny. Fractional differential equations. An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, volume 198 of Math. Sci. Eng. San Diego, CA: Academic Press, 1999. ISBN 0-12-558840-2. Zbl 0924.34008. Cited on p. 11.
- [32] K.-I. Sato. Lévy processes and infinitely divisible distributions. Cambridge University Press, 1999. Zbl 1287.60003. Cited on p. 6.
- [33] W. Schachermayer and J. Teichmann. How close are the option pricing formulas of Bachelier and Black–Merton–Scholes? Mathematical Finance: An International Journal of Mathematics, Statistics and Financial Economics, 18(1):155-170, 2008. Zbl 1138.91479. Cited on pp. 8, 9, and 20.
- [34] W. Whitt. Stochastic-process limits. An introduction to stochastic-process limits and their application to queues. Springer Ser. Oper. Res. Springer, New York, NY, 2002. ISBN 0-387-95358-2. doi: 10.1007/b97479. Zbl 0993.60001. Cited on pp. 13 and 14.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-43f5e2db-3f35-4fa7-80d0-86c643a4f97d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.