Powiadomienia systemowe
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Modified oligodeoxyribonucleotides containing nitrogen at a bridging position of an internucleotide bond
Języki publikacji
Abstrakty
Synthetic oligonucleotides (ONs) constitute an important class of compounds which exhibit biological activity. As potential drugs ONs are employed in the antisense strategy [1]. The antisense therapeutic agent acts on the pathogenic mRNA causing inactivation of the target. Ideal antisense agent should be resistant to exo and/or endonucleases, have a suitable pharmacological and pharmacokinetic profile and high affinity for the target. To improve some properties of antisense oligonucleotides plethora of chemical modifications introduced within both sugar unit and internucleotides linkage were investigated. Among numerous ONs modified in internucleotide phosphodiester bond, one of the most interesting are oligonucleotide phosphoramidates (NP-oligos) in which one of the bridging oxygens is replaced by nitrogen atom (at 3’ or 5’ position). Hence, two classes of compounds are formed: oligonucleotide-(N5’→P3’)phosphoramidates and oligonucleotide(N3’→P5’)-phosphoramidates. These compounds, similar to native DNA and RNA, possess an achiral phosphorous atom and all internucleotides bonds are negatively charged. Additionally, NP-oligo shows good resistance to nucleolytic degradation and can bind to the target DNA or RNA with high affinity [12]. In literature several synthetic strategies concerning both (N5’→P3’) and (N3’→P5’) NP-oligos have been described. Some of them allowed to obtain only corresponding dimers. In the light of recent discoveries the most promising candidates for therapeutic and diagnostic applications are oligonucleotide-(N3’→P5’)thiophosphoramidates. Gryaznov et al. have found that such compounds can act as potent and selective telomerase inhibitors [29]. Human telomerase (TA) is a reverse transcriptase ribonucleoprotein that synthesizes de novo d-(TTAGGG)n repeats at chromosomal DNA ends. Whereas activity of this enzyme is observed in ~85% of all human tumors, most of normal somatic cells either lack TA activity or express it only at low levels. For these reasons TA constitute an attractive and nearly universal anticancer target for rational drug development.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
1003--1025
Opis fizyczny
Bibliogr. 30 poz., schem.
Twórcy
autor
- Centrum Badań Molekularnych i Makromolekularnych Polskiej Akademii Nauk, Zakład Chemii Bioorganicznej ul. Sienkiewicza 112, 90-362 Łódź
Bibliografia
- [1] P.C. Zamecnik, M.L. Stephenson, Proc. Natl. Acad. Sci. U.S.A., 1975, 280.
- [2] B. Jastorff, H. Hettler, Chem. Ber., 1969, 102, 4119.
- [3] W.S. Mungall, G.L. Greene, G.A. Heavner, R.L. Letsinger, J. Org. Chem., 1975, 40, 1659.
- [4] R. Letsinger, G.A. Heavner, Tetrahedron Lett., 1975, 2, 147.
- [5] T. Hata, I. Yamamoto, M. Sekine, Chem. Lett., 1976, 601.
- [6] W. Bannwarth, Helv. Chim. Acta, 1988, 71, 1517.
- [7] Z.A. Shabarova, Biochemie, 1988, 70, 1323.
- [8] W.S. Zielinski, L.E. Orgel, Nucleic Acids Res., 1987, 15, 1699.
- [9] S. Zhang, N. Zhang, J.C. Blain, J.W. Szostak, J. Am. Chem. Soc., 2013, 135, 924.
- [10] F.R. Atherton, H.T. Openshaw, A.R. Todd, J. Chem. Soc., 1945, 660.
- [11] S.M. Gryaznov, N.I. Sokolova, Tetrahedron Lett., 1990, 31, 3205.
- [12] S.M. Gryaznov, J.-K. Chen, J. Am. Chem. Soc., 1994,116, 3143.
- [13] J.S. Nelson, K.L. Fearon, M.Q. Nguyen, S.N. McCurdy, J.E. Frediani, M.F. Foy, B.L. Hirschbein, J. Org. Chem., 1997, 62, 7278.
- [14] M. Mag, R. Schmidt, J. Engels, Tetrahedron Lett., 1992, 33, 7319.
- [15] I. Kers, J. Stawiński, A. Kraszewski, Tetrahedron Lett., 1998, 39, 1219.
- [16] W.J. Stec, A. Grajkowski, A. Kobylańska, B. Karwowski, M. Koziołkiewicz, K. Misiura, A. Okruszek, A. Wilk, P. Guga, and M. Boczkowska, J. Am. Chem. Soc., 1995, 117, 12019.
- [17] J. Baraniak, D. Korczyński, W.J. Stec, J. Org. Chem., 1999, 64 4533.
- [18] T. Skorski, D. Perrotti, M. Nieborowska-Skroska, S. M. Gryaznov, B. Calabretta, Proc. Natl. Acad. Sci. USA, 1997, 94, 3966.
- [19] R. Pruzan, D. Zielinska, B. Rebowska-Kocon, B. Nawrot, S.M. Gryaznov, New J. Chem., 2010, 34, 870.
- [20] K. Pongracz, S.M. Gryaznov, Tetrahedron Lett., 1999, 40, 7661.
- [21] D. Zielinska, K. Pongracz, S.M. Gryaznov, Tetrahedron Lett., 2006, 47, 4495.
- [22] C. Escude, C. Giovannangeli, J.-S. Sun, D.H. Lloyd, J.-K. Chen, S.M. Gryaznov, T. Garestier, C. Helene, Proc. Natl. Acad. Sci., 1996, 93, 4365.
- [23] S.M. Gryaznov, Nucleosides Nucleotides, 1997, 16, 899.
- [24] V. Tereshko, S.M. Gryaznov, M. Egli, J. Am. Chem. Soc., 1999, 120, 269.
- [25] D. Ding, S.M. Gryaznov, W.D. Wilson, Biochemistry, 1998, 37, 12083.
- [26] R.W. Roberts, D.M. Crothers, Science, 1992, 258, 1463.
- [27] S.M. Gryaznov, Biochim. Biophys. Acta, 1999, 1489, 131.
- [28] E.H. Blackburn, Mol. Cancer Res., 2005, 3, 477.
- [29] S.M. Gryaznov, A. Asai, Y. Oshima, Y. Yamamoto, K. Pongracz, R. Pruzan, E. Wunder, M. Piatyszek, S. Li, A. Chin, C. Harley, S. Akinaga, Y. Yamashita, Nucleosides, Nucleotides & Nucl. Acids, 2003, 22, 577.
- [30] S.M. Gryaznov, R.L. Letsinger, Nucleic Acids Res., 1992, 20, 3403.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-43f536a0-5494-45e0-abcd-c2d06a11f5df
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.